This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069024 #19 Apr 01 2024 20:10:41 %S A069024 0,1,2,3,4,5,6,7,8,9,10,20,30,33,40,60,66,80,90,99,252,272,292,313, %T A069024 330,585,626,660,717,990,2112,2720,2772,2920,4224,5850,6336,7447,7470, %U A069024 8448,8580,9009,15351,21120,22122,25752,32223,39993,40904,42240,44244,48384 %N A069024 Numbers that are palindromic in base 2 as well as in base 10 (initial zeros may be prepended). %H A069024 Robert Israel, <a href="/A069024/b069024.txt">Table of n, a(n) for n = 1..243</a> %e A069024 66 in base 2 is 1000010, which is palindromic if rewritten as 01000010. %p A069024 nextpal:= proc(p,d,V,b) %p A069024 local i,i2,pp,m,m2; %p A069024 pp:=p; %p A069024 V[1]:= V[1]+1; %p A069024 m2:= floor(d/2); %p A069024 i2:= ceil(d/2); %p A069024 if d::odd then pp:= pp + b^m2 else pp:= pp + b^m2 + b^(m2-1) fi; %p A069024 for i from 1 while V[i] = b do %p A069024 V[i]:= 0: %p A069024 if i = i2 then %p A069024 if d::even then %p A069024 ArrayTools:-Extend(V,[1],inplace); %p A069024 return b^d+1, d+1, V %p A069024 else %p A069024 V[i2]:= 1; %p A069024 return b^d+1, d+1, V; %p A069024 fi; %p A069024 fi; %p A069024 V[i+1]:= V[i+1]+1; %p A069024 if (d::odd and i=1) then pp:= pp + b^(i2-i-1) else %p A069024 pp:= pp + b^(i2-i-1) - b^(i2-i+1) fi; %p A069024 od; %p A069024 return pp, d, V %p A069024 end proc: %p A069024 count:= 1: %p A069024 S:= 0: %p A069024 p2[0]:=1: V2[0]:= <1>: d2[0]:= 1:m2:= 0: %p A069024 p10[0]:= 1: V10[0]:= <1>: d10[0]:= 1: m10:= 0: %p A069024 while count < 100 do %p A069024 i2:= min[index]([seq(p2[i],i=0..m2)])-1; p2o:= p2[i2]; %p A069024 i10:= min[index]([seq(p10[i],i=0..m10)])-1; p10o:= p10[i10]; %p A069024 if p2o = p10o then %p A069024 S:= S, p2o; count:= count+1; %p A069024 fi; %p A069024 if p2o <= p10o then x, d2[i2], V2[i2]:= nextpal(p2o/2^i2, d2[i2], V2[i2],2); p2[i2]:= 2^i2 *x; %p A069024 if i2 = m2 then m2:= m2+1; p2[m2]:= 2^m2; V2[m2]:= <1>; d2[m2]:= 1; %p A069024 fi; %p A069024 else %p A069024 x, d10[i10], V10[i10]:= nextpal(p10o/10^i10, d10[i10], V10[i10],10); %p A069024 p10[i10]:= 10^i10 * x; %p A069024 if i10 = m10 then m10:= m10+1; p10[m10]:= 10^m10; V10[m10]:= <1>; d10[m10]:= 1 %p A069024 fi fi od: %p A069024 S; # _Robert Israel_, Apr 01 2024 %t A069024 pal[n_, b_] := (z=IntegerDigits[n, b]) == Reverse[z]; extpal[n_, b_] := If[Mod[n, b]>0, pal[n, b], extpal[n/b, b]]; Select[Range[50000], extpal[ #, 10]&&extpal[ #, 2]&] %Y A069024 Cf. A007632. %Y A069024 Intersection of A061917 and A057890. %K A069024 nonn,base %O A069024 1,3 %A A069024 _Amarnath Murthy_, Apr 02 2002 %E A069024 Edited by _Dean Hickerson_, Apr 06 2002 %E A069024 0 inserted by _Sean A. Irvine_, Mar 29 2024