cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069076 a(n) = (4*n^2 - 1)^3.

This page as a plain text file.
%I A069076 #27 Feb 25 2022 07:17:50
%S A069076 27,3375,42875,250047,970299,2924207,7414875,16581375,33698267,
%T A069076 63521199,112678587,190109375,307546875,480048687,726572699,
%U A069076 1070599167,1540798875,2171747375,3004685307,4088324799,5479701947,7245075375
%N A069076 a(n) = (4*n^2 - 1)^3.
%D A069076 Konrad Knopp, Theory and application of infinite series, Dover, p. 269.
%H A069076 Harvey P. Dale, <a href="/A069076/b069076.txt">Table of n, a(n) for n = 1..1000</a>
%H A069076 Konrad Knopp, <a href="http://name.umdl.umich.edu/ACM1954.0001.001">Theorie und Anwendung der unendlichen Reihen</a>, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
%H A069076 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F A069076 Sum_{n>=1} 1/a(n) = (32 - 3*Pi^3)/64.
%F A069076 a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(1)=27, a(2)=3375, a(3)=42875, a(4)=250047, a(5)=970299, a(6)=2924207, a(7)=7414875. - _Harvey P. Dale_, Jan 20 2012
%F A069076 G.f: x*(x^6 - 34*x^5 - 3165*x^4 - 19852*x^3 - 19817*x^2 - 3186*x - 27)/(x-1)^7. - _Harvey P. Dale_, Jan 20 2012
%F A069076 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^3/128 + 3*Pi/32 - 1/2. - _Amiram Eldar_, Feb 25 2022
%t A069076 (4Range[30]^2-1)^3 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{27,3375,42875,250047,970299,2924207,7414875},30] (* _Harvey P. Dale_, Jan 20 2012 *)
%Y A069076 Cf. A000466, A069075.
%K A069076 easy,nonn
%O A069076 1,1
%A A069076 _Benoit Cloitre_, Apr 05 2002