cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069079 a(n) = (2*n+1)*(2*n+2)*(2*n+4)*(2*n+5).

This page as a plain text file.
%I A069079 #19 Aug 28 2025 10:19:36
%S A069079 40,504,2160,6160,14040,27720,49504,82080,128520,192280,277200,387504,
%T A069079 527800,703080,918720,1180480,1494504,1867320,2305840,2817360,3409560,
%U A069079 4090504,4868640,5752800,6752200,7876440,9135504,10539760,12099960,13827240,15733120,17829504
%N A069079 a(n) = (2*n+1)*(2*n+2)*(2*n+4)*(2*n+5).
%D A069079 Konrad Knopp, Theory and application of infinite series, Dover, p. 268
%H A069079 Konrad Knopp, <a href="http://www.hti.umich.edu/cgi/t/text/text-idx?sid=b88432273f115fb346725f1a42422e19;c=umhistmath;idno=ACM1954.0001.001">Theorie und Anwendung der unendlichen Reihen</a>, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
%H A069079 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A069079 Sum_{n>=1} 1/a(n) = 1/36 Sum_{n>=1} (-1)^n/a(n) = 5/36 - log(2)/6.
%F A069079 From _Elmo R. Oliveira_, Aug 28 2025: (Start)
%F A069079 G.f.: 8*(5 + 38*x + 5*x^2)/(1 - x)^5.
%F A069079 E.g.f.: 4*exp(x)*(10 + 116*x + 149*x^2 + 48*x^3 + 4*x^4).
%F A069079 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
%F A069079 a(n) = A078371(n)*A033996(n+1). (End)
%t A069079 Table[16n^4+96n^3+196n^2+156n+40,{n,0,40}]
%o A069079 (PARI) my(x='x+O('x^32)); Vec(-8*(5+38*x+5*x^2)/(x-1)^5) \\ _Elmo R. Oliveira_, Aug 28 2025
%Y A069079 Cf. A033996, A078371.
%K A069079 easy,nonn,changed
%O A069079 0,1
%A A069079 _Benoit Cloitre_, Apr 05 2002
%E A069079 More terms from _Elmo R. Oliveira_, Aug 28 2025