This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069121 #22 May 24 2017 02:37:54 %S A069121 0,2,96,1620,17920,157500,1197504,8240232,52715520,318995820, %T A069121 1847560000,10328229912,56073378816,297051536600,1541119305600, %U A069121 7852824450000,39392404439040,194905125100620,952671403252800 %N A069121 a(n) = n^4*binomial(2n,n). %D A069121 J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 386. %H A069121 G. C. Greubel, <a href="/A069121/b069121.txt">Table of n, a(n) for n = 0..1000</a> %F A069121 Sum_{n>=1} 1/a(n) = 17*Pi^4/3240. (Comtet, 1974) %F A069121 a(n) = a(n-1)*(4*n-2)*n^3/(n-1)^4, n>1. - _Michael Somos_, Apr 18 2003 %F A069121 Equals A002736*n^2. - _Zerinvary Lajos_, May 28 2006 %F A069121 From _Ilya Gutkovskiy_, Feb 07 2017: (Start) %F A069121 G.f.: 2*x*(1 + 30*x + 72*x^2 + 8*x^3)/(1 - 4*x)^(9/2). %F A069121 a(n) ~ 4^n*n^(7/2)/sqrt(Pi). (End) %p A069121 with(combinat):for n from 0 to 18 do printf(`%d, `,n^3*sum(binomial(2*n, n), k=1..n)) od: # _Zerinvary Lajos_, Mar 13 2007 %t A069121 Table[n^4*Binomial[2 n, n], {n, 0, 18}] (* or *) %t A069121 CoefficientList[Series[2 x (1 + 30 x + 72 x^2 + 8 x^3)/(1 - 4 x)^(9/2), {x, 0, 18}], x] (* _Michael De Vlieger_, Feb 07 2017 *) %o A069121 (PARI) a(n)=if(n<1,0,n^4*binomial(2*n,n)) %Y A069121 Cf. A002736. %K A069121 easy,nonn %O A069121 0,2 %A A069121 _Benoit Cloitre_, Apr 07 2002