This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069132 #53 Feb 16 2025 08:32:45 %S A069132 1,20,58,115,191,286,400,533,685,856,1046,1255,1483,1730,1996,2281, %T A069132 2585,2908,3250,3611,3991,4390,4808,5245,5701,6176,6670,7183,7715, %U A069132 8266,8836,9425,10033,10660,11306,11971,12655,13358,14080,14821,15581,16360,17158 %N A069132 Centered 19-gonal numbers. %C A069132 Binomial transform of [1, 19, 19, 0, 0, 0, ...] and Narayana transform (A001263) of [1, 19, 0, 0, 0, ...]. - _Gary W. Adamson_, Jul 28 2011 %H A069132 Ivan Panchenko, <a href="/A069132/b069132.txt">Table of n, a(n) for n = 1..1000</a> %H A069132 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredPolygonalNumber.html">Centered Polygonal Numbers</a> %H A069132 <a href="/index/Ce#CENTRALCUBE">Index entries for sequences related to centered polygonal numbers</a> %H A069132 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A069132 a(n) = (19*n^2 - 19*n + 2)/2. %F A069132 a(n) = 19*n + a(n-1) - 19 (with a(1)=1). - _Vincenzo Librandi_, Aug 08 2010 %F A069132 G.f.: x*(1 + 17*x + x^2) / (1-x)^3. - _R. J. Mathar_, Feb 04 2011 %F A069132 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=20, a(2)=58. - _Harvey P. Dale_, Aug 21 2011 %F A069132 From _Amiram Eldar_, Jun 21 2020: (Start) %F A069132 Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(11/19)*Pi/2)/sqrt(209). %F A069132 Sum_{n>=1} a(n)/n! = 21*e/2 - 1. %F A069132 Sum_{n>=1} (-1)^n * a(n)/n! = 21/(2*e) - 1. (End) %F A069132 E.g.f.: exp(x)*(1 + 19*x^2/2) - 1. - _Nikolaos Pantelidis_, Feb 06 2023 %e A069132 a(5)= 191 because (19*5^2 - 19*5 + 2)/2 = (475 - 95 + 2)/2 = 382/2 = 191. %t A069132 FoldList[#1 + #2 &, 1, 19 Range@ 45] (* _Robert G. Wilson v_, Feb 02 2011 *) %t A069132 Table[(19n^2-19n+2)/2,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,20,58},50] (* _Harvey P. Dale_, Aug 21 2011 *) %o A069132 (PARI) a(n)=19*binomial(n,2)+1 \\ _Charles R Greathouse IV_, Jul 29 2011 %Y A069132 Cf. centered polygonal numbers listed in A069190. %K A069132 easy,nice,nonn %O A069132 1,2 %A A069132 _Terrel Trotter, Jr._, Apr 07 2002