cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069151 Concatenations of consecutive primes, starting with 2, that are also prime.

This page as a plain text file.
%I A069151 #41 Feb 16 2025 08:32:45
%S A069151 2,23,2357
%N A069151 Concatenations of consecutive primes, starting with 2, that are also prime.
%C A069151 Primes in A019518.
%C A069151 The next term is the 355-digit number 2357111317192329313741434753...677683691701709719 which is too large to include here. See A046035, A046284.
%C A069151 The term after the 355-digit term has 499 digits, and the next two terms after that have 1171 and 1543 digits respectively. - _Harvey P. Dale_, Oct 03 2024
%D A069151 R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, NY, 2005; see p. 78. [The 2002 printing states incorrectly that 2357...5441 is prime.]
%H A069151 Jens Kruse Andersen, <a href="/A069151/b069151.txt">Table of n, a(n) for n = 1..5</a>
%H A069151 M. Fleuren, <a href="http://www.gallup.unm.edu/~smarandache/SmConPri.txt">Smarandache Concatenated Primes</a>
%H A069151 Ernest G. Hibbs, <a href="https://www.proquest.com/openview/4012f0286b785cd732c78eb0fc6fce80">Component Interactions of the Prime Numbers</a>, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
%H A069151 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Smarandache-WellinNumber.html">Smarandache-Wellin Number</a>
%H A069151 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Smarandache-WellinPrime.html">Smarandache-Wellin Prime</a>
%H A069151 Wikipedia, <a href="https://en.wikipedia.org/wiki/Smarandache%E2%80%93Wellin_number">Smarandache-Wellin number</a>
%H A069151 <a href="/index/Mo#MWP">Index entries for sequences related to Most Wanted Primes video</a>
%t A069151 Cases[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[ Range[10^3]]]]], _?PrimeQ] (* _Eric W. Weisstein_, Oct 30 2015 *)
%t A069151 Select[Table[FromDigits[Flatten[IntegerDigits/@Prime[Range[n]]]],{n,500}],PrimeQ] (* _Harvey P. Dale_, Oct 03 2024 *)
%o A069151 (PARI) s=""; for(n=1, 200, s=concat(s, prime(n)); if(ispseudoprime( eval(s)), print1(s", "))) \\ _Jens Kruse Andersen_, Jun 26 2014
%o A069151 (Python)
%o A069151 from sympy import isprime, nextprime
%o A069151 def afind(terms, verbose=False):
%o A069151   n, p, pstr = 0, 2, "2"
%o A069151   while n < terms:
%o A069151     if isprime(int(pstr)): n += 1; print(n, int(pstr))
%o A069151     p = nextprime(p); pstr += str(p)
%o A069151 afind(5) # _Michael S. Branicky_, Feb 23 2021
%Y A069151 Cf. A019518.
%Y A069151 Cf. A046035 (Numbers n such that the concatenation of the first n primes is prime)
%Y A069151 Cf. A046284 (Primes p such that concatenation of primes from 2 through p is a prime).
%Y A069151 Cf. A030997 (Smallest prime which is a concatenation of n consecutive primes).
%K A069151 nonn,bref,base
%O A069151 1,1
%A A069151 _Joseph L. Pe_, Apr 08 2002
%E A069151 Edited by _Robert G. Wilson v_, Apr 11 2002
%E A069151 Entry revised Jan 18 2004