cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069180 F(n) and n! are relatively prime where F(n) are the Fibonacci numbers.

This page as a plain text file.
%I A069180 #17 Jun 07 2020 08:16:10
%S A069180 1,2,7,11,13,17,19,22,23,26,29,31,34,37,41,43,46,47,53,58,59,61,62,67,
%T A069180 71,73,79,82,83,86,89,94,97,101,103,106,107,109,113,118,122,127,131,
%U A069180 134,137,139,142,146,149,151,157,163,166,167,169,173,178,179,181,191
%N A069180 F(n) and n! are relatively prime where F(n) are the Fibonacci numbers.
%C A069180 Are there any primes p >5 such that F(p) and p! are not relatively primes?
%C A069180 From _Robert Israel_, May 31 2018: (Start)
%C A069180 n is in the sequence if and only if there is no prime q = prime(k) <= n such that A001602(k) | n.
%C A069180 All primes > 5 are in the sequence, because A001602(k) < prime(k) for k > 3, and we can't have n prime unless A001602(k)=n.
%C A069180 (End)
%H A069180 Robert Israel, <a href="/A069180/b069180.txt">Table of n, a(n) for n = 1..10000</a>
%F A069180 Conjecture : a(n) = C*n*Log(n) + 0(n*Log(n)) with 0, 6 < C < 0, 7
%p A069180 N:= 200: # for all terms <= N
%p A069180 V:= Vector(N,1):
%p A069180 F:= proc(n) option remember; procname(n-1)+procname(n-2) end proc:
%p A069180 F(0):= 0: F(1):= 1:
%p A069180 K:= proc(q) local k;
%p A069180    for k from 1 do if F(k) mod q = 0 then return k fi
%p A069180      od
%p A069180 end proc:
%p A069180 p:= 1:
%p A069180 do
%p A069180   p:= nextprime(p);
%p A069180   if p > N then break fi;
%p A069180   k:= K(p);
%p A069180   k0:= k*ceil(p/k);
%p A069180   V[[seq(i,i=k0..N,k)]]:= 0
%p A069180 od:
%p A069180 select(t -> V[t]=1, [$1..N]); # _Robert Israel_, May 31 2018
%t A069180 Select[Range[1000], CoprimeQ[Fibonacci[#], #!]&] (* _Jean-François Alcover_, Jun 07 2020 *)
%Y A069180 Cf. A000045, A001602.
%K A069180 easy,nonn
%O A069180 1,2
%A A069180 _Benoit Cloitre_, Apr 10 2002