This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069180 #17 Jun 07 2020 08:16:10 %S A069180 1,2,7,11,13,17,19,22,23,26,29,31,34,37,41,43,46,47,53,58,59,61,62,67, %T A069180 71,73,79,82,83,86,89,94,97,101,103,106,107,109,113,118,122,127,131, %U A069180 134,137,139,142,146,149,151,157,163,166,167,169,173,178,179,181,191 %N A069180 F(n) and n! are relatively prime where F(n) are the Fibonacci numbers. %C A069180 Are there any primes p >5 such that F(p) and p! are not relatively primes? %C A069180 From _Robert Israel_, May 31 2018: (Start) %C A069180 n is in the sequence if and only if there is no prime q = prime(k) <= n such that A001602(k) | n. %C A069180 All primes > 5 are in the sequence, because A001602(k) < prime(k) for k > 3, and we can't have n prime unless A001602(k)=n. %C A069180 (End) %H A069180 Robert Israel, <a href="/A069180/b069180.txt">Table of n, a(n) for n = 1..10000</a> %F A069180 Conjecture : a(n) = C*n*Log(n) + 0(n*Log(n)) with 0, 6 < C < 0, 7 %p A069180 N:= 200: # for all terms <= N %p A069180 V:= Vector(N,1): %p A069180 F:= proc(n) option remember; procname(n-1)+procname(n-2) end proc: %p A069180 F(0):= 0: F(1):= 1: %p A069180 K:= proc(q) local k; %p A069180 for k from 1 do if F(k) mod q = 0 then return k fi %p A069180 od %p A069180 end proc: %p A069180 p:= 1: %p A069180 do %p A069180 p:= nextprime(p); %p A069180 if p > N then break fi; %p A069180 k:= K(p); %p A069180 k0:= k*ceil(p/k); %p A069180 V[[seq(i,i=k0..N,k)]]:= 0 %p A069180 od: %p A069180 select(t -> V[t]=1, [$1..N]); # _Robert Israel_, May 31 2018 %t A069180 Select[Range[1000], CoprimeQ[Fibonacci[#], #!]&] (* _Jean-François Alcover_, Jun 07 2020 *) %Y A069180 Cf. A000045, A001602. %K A069180 easy,nonn %O A069180 1,2 %A A069180 _Benoit Cloitre_, Apr 10 2002