This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069194 #20 Oct 28 2022 07:15:03 %S A069194 1,3,7,13,21,21,43,53,64,63,111,91,157,129,147,213,273,192,343,273, %T A069194 301,333,507,371,526,471,577,559,813,441,931,853,777,819,903,832,1333, %U A069194 1029,1099,1113,1641,903,1807,1443,1344,1521,2163,1491,2108,1578,1911,2041 %N A069194 a(n) = Sum_{d|n} (n/d)*phi(n)/phi(d). %H A069194 Amiram Eldar, <a href="/A069194/b069194.txt">Table of n, a(n) for n = 1..10000</a> %F A069194 Multiplicative with a(p^e) = p^e*(p^e - p^(e-1)) + (p^(2*e) - 1)/(p^2 - 1). - _Amiram Eldar_, Sep 15 2019 %F A069194 Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 1/p^2 + 1/p^5) = 0.2550149528... . - _Amiram Eldar_, Oct 28 2022 %p A069194 for i from 1 to 100 do d := divisors(i): a[i] := i*phi(i)*sum(1/d[j]/phi(d[j]),j=1..nops(d)) od:seq(a[j],j=1..100); %t A069194 f[p_, e_] := p^e*(p^e - p^(e-1)) + (p^(2*e) - 1)/(p^2 - 1) ; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Sep 15 2019 *) %o A069194 (Magma) [&+[(n div d)*EulerPhi(n) div EulerPhi(d):d in Divisors(n)]:n in [1..52]]; // _Marius A. Burtea_, Sep 15 2019 %o A069194 (PARI) a(n) = sumdiv(n, d, n/d*eulerphi(n)/eulerphi(d)); \\ _Michel Marcus_, Sep 15 2019 %Y A069194 Cf. A000010, A002117. %K A069194 mult,easy,nonn %O A069194 1,2 %A A069194 _Vladeta Jovovic_, Apr 10 2002 %E A069194 More terms from _Sascha Kurz_, Jan 03 2003