This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069251 #17 Jul 18 2018 02:30:17 %S A069251 1,2,4,8,14,24,40,64,100,152,226,330,474,670,934,1286,1748,2350,3128, %T A069251 4122,5384,6974,8960,11426,14468,18196,22740,28248,34888,42854,52366, %U A069251 63670,77048,92816,111324,132970,158194,187482,221380,260488,305466 %N A069251 Number of basis partitions of n+64 with Durfee square size 8. %H A069251 Seiichi Manyama, <a href="/A069251/b069251.txt">Table of n, a(n) for n = 0..10000</a> %H A069251 M. D. Hirschhorn, <a href="https://doi.org/10.1016/S0012-365X(99)00030-8">Basis partitions and Rogers-Ramanujan partitions</a>, Discrete Math. 205 (1999), 241-243. %F A069251 G.f.: (x^4 -x^3 +x^2 -x +1)*(x^4 -x^2 +1)*(x^6 -x^5 +x^4 -x^3 +x^2 -x +1)*(x^8 +1)/((x -1)^8*(x^2 +x +1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). [_Colin Barker_, Sep 23 2012] %o A069251 (PARI) s=8; a(n)=polcoeff(prod(i=1,s,(1+x^i))/(prod(i=1,s,(1-x^i))+x*O(x^n)),n) for(n=0,50,print1(a(n),",")) %Y A069251 Column k=8 of A316723. %K A069251 nonn,easy %O A069251 0,2 %A A069251 _Benoit Cloitre_, Apr 13 2002