cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069261 Denominators of the Egyptian fraction for the fractional part of Feigenbaum's constant, 4.6692...

This page as a plain text file.
%I A069261 #24 Sep 30 2024 09:15:28
%S A069261 2,6,395,303319,131209492876,45596605913248081159007,
%T A069261 34243827483200809826686815883136413405197711755,
%U A069261 111445370519459209554489628949586784217535791333333948765270067675689059510906528783799426730444
%N A069261 Denominators of the Egyptian fraction for the fractional part of Feigenbaum's constant, 4.6692...
%C A069261 The next term in the series, a(9), is ~ 10^190.
%C A069261 The sequence gives the denominators for the fractional part of delta only. One could prefix four 1's in order to get (sum of reciprocals) = delta.
%H A069261 Kevin Ryde, <a href="/A069261/b069261.txt">Table of n, a(n) for n = 1..10</a>
%F A069261 a(n) = ceiling(1/(delta - 4 - Sum_{0 < i < n} 1/a(i))) is the smallest integer such that 4 + Sum_{i=1..n} 1/a(i) < delta = 4.6620... - _M. F. Hasler_, Apr 30 2018
%o A069261 (PARI) t=delta-4/*from A006890, or use: t=contfracpnqn(A069544); t[1,1]/t[2,1]*/; for(i=1,8,print1(1\t+1",");t-=1/(1\t+1)) \\ Requires delta to 93 decimals or A069544 to 90 terms (up to [...,1,1,4]) to get a(7) correctly, 180 terms for a(8). - _M. F. Hasler_, Apr 30 2018
%Y A069261 Cf. A006890 (Feigenbaum's constant), A069544 (continued fraction).
%K A069261 frac,nonn
%O A069261 1,1
%A A069261 Christopher Lund (clund(AT)san.rr.com), Apr 14 2002
%E A069261 Edited by _M. F. Hasler_, Apr 30 2018