This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069261 #24 Sep 30 2024 09:15:28 %S A069261 2,6,395,303319,131209492876,45596605913248081159007, %T A069261 34243827483200809826686815883136413405197711755, %U A069261 111445370519459209554489628949586784217535791333333948765270067675689059510906528783799426730444 %N A069261 Denominators of the Egyptian fraction for the fractional part of Feigenbaum's constant, 4.6692... %C A069261 The next term in the series, a(9), is ~ 10^190. %C A069261 The sequence gives the denominators for the fractional part of delta only. One could prefix four 1's in order to get (sum of reciprocals) = delta. %H A069261 Kevin Ryde, <a href="/A069261/b069261.txt">Table of n, a(n) for n = 1..10</a> %F A069261 a(n) = ceiling(1/(delta - 4 - Sum_{0 < i < n} 1/a(i))) is the smallest integer such that 4 + Sum_{i=1..n} 1/a(i) < delta = 4.6620... - _M. F. Hasler_, Apr 30 2018 %o A069261 (PARI) t=delta-4/*from A006890, or use: t=contfracpnqn(A069544); t[1,1]/t[2,1]*/; for(i=1,8,print1(1\t+1",");t-=1/(1\t+1)) \\ Requires delta to 93 decimals or A069544 to 90 terms (up to [...,1,1,4]) to get a(7) correctly, 180 terms for a(8). - _M. F. Hasler_, Apr 30 2018 %Y A069261 Cf. A006890 (Feigenbaum's constant), A069544 (continued fraction). %K A069261 frac,nonn %O A069261 1,1 %A A069261 Christopher Lund (clund(AT)san.rr.com), Apr 14 2002 %E A069261 Edited by _M. F. Hasler_, Apr 30 2018