This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069270 #27 Jan 05 2025 19:51:36 %S A069270 1,1,1,1,2,4,1,3,9,22,1,4,15,52,140,1,5,22,91,340,969,1,6,30,140,612, %T A069270 2394,7084,1,7,39,200,969,4389,17710,53820,1,8,49,272,1425,7084,32890, %U A069270 135720,420732,1,9,60,357,1995,10626,53820,254475,1068012,3362260 %N A069270 Third level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 2nd level is A069269). %C A069270 For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1). %C A069270 Antidiagonals of convolution matrix of Table 1.5, p. 397, of Hoggatt and Bicknell. - _Tom Copeland_, Dec 25 2019 %H A069270 Michael De Vlieger, <a href="/A069270/b069270.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened.) %H A069270 V. E. Hoggatt, Jr. and M. Bicknell, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/14-5/hoggatt1.pdf">Catalan and related sequences arising from inverses of Pascal's triangle matrices</a>, Fib. Quart., 14 (1976), 395-405. %F A069270 T(n, k) = C(n+3k, k)*(n-k+1)/(n+2k+1). %F A069270 For n >= k+3: T(n, k) = T(n-2, k+1)-T(n-3, k+1). %F A069270 T(n, n) = T(n+2, n-1) = C(4n, n)/(3n+1). %e A069270 Rows start %e A069270 1; %e A069270 1, 1; %e A069270 1, 2, 4; %e A069270 1, 3, 9, 22; %e A069270 1, 4, 15, 52, 140; %e A069270 etc. %p A069270 A069270 := proc(n,k) %p A069270 binomial(n+3*k,k)*(n-k+1)/(n+2*k+1) ; %p A069270 end proc: # _R. J. Mathar_, Oct 11 2015 %t A069270 Table[Binomial[n + 3 k, k] (n - k + 1)/(n + 2 k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 27 2019 *) %Y A069270 Columns include A000012, A000027, A055999. %Y A069270 Right-hand diagonals include A002293, A069271, A006632. %Y A069270 Cf. A130458 (row sums). %K A069270 nonn,tabl,easy %O A069270 0,5 %A A069270 _Henry Bottomley_, Mar 12 2002