This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069272 #38 Feb 16 2025 08:32:45 %S A069272 2048,3072,4608,5120,6912,7168,7680,10368,10752,11264,11520,12800, %T A069272 13312,15552,16128,16896,17280,17408,17920,19200,19456,19968,23328, %U A069272 23552,24192,25088,25344,25920,26112,26880,28160,28800,29184,29696 %N A069272 11-almost primes (generalization of semiprimes). %C A069272 Product of 11 not necessarily distinct primes. %C A069272 Divisible by exactly 11 prime powers (not including 1). %H A069272 D. W. Wilson, <a href="/A069272/b069272.txt">Table of n, a(n) for n = 1..10000</a> %H A069272 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Almost Prime.</a> %F A069272 Product p_i^e_i with Sum e_i = 11. %F A069272 a(n) ~ 3628800n log n / (log log n)^10. - _Charles R Greathouse IV_, May 06 2013 %t A069272 Select[Range[9000], Plus @@ Last /@ FactorInteger[ # ] == 11 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *) %t A069272 Select[Range[30000],PrimeOmega[#]==11&] (* _Harvey P. Dale_, Jul 13 2013 *) %o A069272 (PARI) k=11; start=2^k; finish=30000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v %o A069272 (PARI) is(n)=bigomega(n)==11 \\ _Charles R Greathouse IV_, Oct 15 2015 %o A069272 (Python) %o A069272 from math import isqrt, prod %o A069272 from sympy import primerange, integer_nthroot, primepi %o A069272 def A069272(n): %o A069272 def bisection(f, kmin=0, kmax=1): %o A069272 while f(kmax) > kmax: kmax <<= 1 %o A069272 while kmax-kmin > 1: %o A069272 kmid = kmax+kmin>>1 %o A069272 if f(kmid) <= kmid: %o A069272 kmax = kmid %o A069272 else: %o A069272 kmin = kmid %o A069272 return kmax %o A069272 def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1))) %o A069272 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 11))) %o A069272 return bisection(f, n, n) # _Chai Wah Wu_, Nov 03 2024 %Y A069272 Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), this sequence (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011 %K A069272 nonn %O A069272 1,1 %A A069272 _Rick L. Shepherd_, Mar 12 2002