This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069275 #32 Feb 16 2025 08:32:45 %S A069275 16384,24576,36864,40960,55296,57344,61440,82944,86016,90112,92160, %T A069275 102400,106496,124416,129024,135168,138240,139264,143360,153600, %U A069275 155648,159744,186624,188416,193536,200704,202752,207360,208896,215040,225280 %N A069275 14-almost primes (generalization of semiprimes). %C A069275 Product of 14 not necessarily distinct primes. %C A069275 Divisible by exactly 14 prime powers (not including 1). %C A069275 Any 14-almost prime can be represented in several ways as a product of two 7-almost primes A046308; and in several ways as a product of seven semiprimes A001358. - _Jonathan Vos Post_, Dec 11 2004 %H A069275 D. W. Wilson, <a href="/A069275/b069275.txt">Table of n, a(n) for n = 1..10000</a> %H A069275 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Almost Prime.</a> %F A069275 Product p_i^e_i with Sum e_i = 14. %t A069275 Select[Range[50000], Plus @@ Last /@ FactorInteger[ # ] == 14 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *) %o A069275 (PARI) k=14; start=2^k; finish=240000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v %o A069275 (Python) %o A069275 from math import isqrt, prod %o A069275 from sympy import primerange, integer_nthroot, primepi %o A069275 def A069275(n): %o A069275 def bisection(f,kmin=0,kmax=1): %o A069275 while f(kmax) > kmax: kmax <<= 1 %o A069275 while kmax-kmin > 1: %o A069275 kmid = kmax+kmin>>1 %o A069275 if f(kmid) <= kmid: %o A069275 kmax = kmid %o A069275 else: %o A069275 kmin = kmid %o A069275 return kmax %o A069275 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A069275 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,14))) %o A069275 return bisection(f,n,n) # _Chai Wah Wu_, Nov 03 2024 %Y A069275 Cf. A101637, A101638, A101605, A101606. %Y A069275 Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), this sequence(r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011 %K A069275 nonn %O A069275 1,1 %A A069275 _Rick L. Shepherd_, Mar 13 2002