This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069280 #32 Feb 16 2025 08:32:46 %S A069280 524288,786432,1179648,1310720,1769472,1835008,1966080,2654208, %T A069280 2752512,2883584,2949120,3276800,3407872,3981312,4128768,4325376, %U A069280 4423680,4456448,4587520,4915200,4980736,5111808,5971968,6029312,6193152 %N A069280 19-almost primes (generalization of semiprimes). %C A069280 Product of 19 not necessarily distinct primes. %C A069280 Divisible by exactly 19 prime powers (not including 1). %H A069280 D. W. Wilson, <a href="/A069280/b069280.txt">Table of n, a(n) for n = 1..10000</a> %H A069280 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Almost Prime.</a> %F A069280 Product p_i^e_i with Sum e_i = 19. %o A069280 (PARI) k=19; start=2^k; finish=8000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v %o A069280 (Python) %o A069280 from math import prod, isqrt %o A069280 from sympy import primerange, integer_nthroot, primepi %o A069280 def A069280(n): %o A069280 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A069280 def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,19))) %o A069280 kmin, kmax = 1,2 %o A069280 while f(kmax) >= kmax: %o A069280 kmax <<= 1 %o A069280 while True: %o A069280 kmid = kmax+kmin>>1 %o A069280 if f(kmid) < kmid: %o A069280 kmax = kmid %o A069280 else: %o A069280 kmin = kmid %o A069280 if kmax-kmin <= 1: %o A069280 break %o A069280 return kmax # _Chai Wah Wu_, Aug 23 2024 %Y A069280 Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), this sequence (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011 %K A069280 nonn %O A069280 1,1 %A A069280 _Rick L. Shepherd_, Mar 13 2002