cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069284 Decimal expansion of li(2) = gamma + log(log(2)) + Sum_{k>=1} log(2)^k / ( k*k! ).

Original entry on oeis.org

1, 0, 4, 5, 1, 6, 3, 7, 8, 0, 1, 1, 7, 4, 9, 2, 7, 8, 4, 8, 4, 4, 5, 8, 8, 8, 8, 9, 1, 9, 4, 6, 1, 3, 1, 3, 6, 5, 2, 2, 6, 1, 5, 5, 7, 8, 1, 5, 1, 2, 0, 1, 5, 7, 5, 8, 3, 2, 9, 0, 9, 1, 4, 4, 0, 7, 5, 0, 1, 3, 2, 0, 5, 2, 1, 0, 3, 5, 9, 5, 3, 0, 1, 7, 2, 7, 1, 7, 4, 0, 5, 6, 2, 6, 3, 8, 3, 3, 5, 6, 3, 0, 6, 0, 2
Offset: 1

Views

Author

Frank Ellermann, Mar 13 2002

Keywords

Comments

From Mats Granvik, Jun 14 2013: (Start)
The logarithmic integral li(x) = exponential integral Ei(log(x)).
The generating function for tau A000005, the number of divisors of n is: Sum_{n >= 1} a(n) x^n = Sum_{k > 0} x^k/(1 - x^k). Another way to write the generating function for tau A000005 is Sum_{n>=1} A000005(n) x^n = Sum_{a=1..Infinity} Sum_{b>=1} x^(a*b).
If we instead think of the integral with the same form, evaluate at x = exp(1) = 2.7182818284... = A001113 and set the integration limits to zero and sqrt(log(n)), we get for n >= 0:
Logarithmic integral li(n) = Integral_{a = 0..sqrt(log(n))} Integral_{b=0..sqrt(log(n))} exp(1)^(a*b) + EulerGamma + log(log(n)). (End)
li(2)-1 is the minimum [known to date, for n>1] of |li(n) - PrimePi(n)|. - Jean-François Alcover, Jul 10 2013
The modern logarithmic integral function li(x) = Integral_{t=0..x} (1/log(t)) replaced the Li(x) = Integral_{t=2..x} (1/log(t)) which was sometimes used because it avoids the singularity at x=1. This constant is the offset between the two functions: li(2) = li(x) - Li(x) = Integral_{t=0..2} (1/log(t)). - Stanislav Sykora, May 09 2015

Examples

			1.0451637801174927848445888891946131365226155781512015758329...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 425.

Crossrefs

Cf. A069285 (continued fraction), A057754, A057794, A060851.
Euler's constant gamma: A001620, log(2): A002162, k*k!: A001563.

Programs

Extensions

Replaced several occurrences of "Li" with "li" in order to enforce current conventions. - Stanislav Sykora, May 09 2015