A069284 Decimal expansion of li(2) = gamma + log(log(2)) + Sum_{k>=1} log(2)^k / ( k*k! ).
1, 0, 4, 5, 1, 6, 3, 7, 8, 0, 1, 1, 7, 4, 9, 2, 7, 8, 4, 8, 4, 4, 5, 8, 8, 8, 8, 9, 1, 9, 4, 6, 1, 3, 1, 3, 6, 5, 2, 2, 6, 1, 5, 5, 7, 8, 1, 5, 1, 2, 0, 1, 5, 7, 5, 8, 3, 2, 9, 0, 9, 1, 4, 4, 0, 7, 5, 0, 1, 3, 2, 0, 5, 2, 1, 0, 3, 5, 9, 5, 3, 0, 1, 7, 2, 7, 1, 7, 4, 0, 5, 6, 2, 6, 3, 8, 3, 3, 5, 6, 3, 0, 6, 0, 2
Offset: 1
Examples
1.0451637801174927848445888891946131365226155781512015758329...
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 425.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Eric Weisstein's World of Mathematics, Logarithmic Integral
- Wikipedia, Logarithmic integral function
Crossrefs
Programs
-
Mathematica
RealDigits[ LogIntegral[2], 10, 105][[1]] (* Robert G. Wilson v, Oct 08 2004 *)
-
PARI
-real(eint1(-log(2))) \\ Charles R Greathouse IV, May 26 2013
Extensions
Replaced several occurrences of "Li" with "li" in order to enforce current conventions. - Stanislav Sykora, May 09 2015
Comments