cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069290 Sum of the square roots of the square divisors of n.

This page as a plain text file.
%I A069290 #60 Jul 09 2025 21:34:49
%S A069290 1,1,1,3,1,1,1,3,4,1,1,3,1,1,1,7,1,4,1,3,1,1,1,3,6,1,4,3,1,1,1,7,1,1,
%T A069290 1,12,1,1,1,3,1,1,1,3,4,1,1,7,8,6,1,3,1,4,1,3,1,1,1,3,1,1,4,15,1,1,1,
%U A069290 3,1,1,1,12,1,1,6,3,1,1,1,7,13,1,1,3,1,1,1,3,1,4,1,3,1,1,1,7,1,8,4,18,1,1
%N A069290 Sum of the square roots of the square divisors of n.
%C A069290 a(m)=1 iff m is squarefree (A005117).
%H A069290 Nick Hobson, <a href="/A069290/b069290.txt">Table of n, a(n) for n = 1..1000</a>
%H A069290 A. Dixit, B. Maji, and A. Vatwani, <a href="https://arxiv.org/abs/2303.09937">Voronoi summation formula for the generalized divisor function sigma_z^k(n)</a>, arXiv:2303.09937 [math.NT], 2023, sigma_(z=1,k=2,n).
%F A069290 Multiplicative with a(p^e) = (p^(floor(e/2)+1)-1)/(p-1). - _Vladeta Jovovic_, Apr 23 2002
%F A069290 G.f.: Sum_{k>=1} k*x^k^2/(1-x^k^2). - _Ralf Stephan_, Apr 21 2003
%F A069290 Dirichlet g.f.: zeta(2s-1)*zeta(s). Inverse Mobius transform of A037213. - _R. J. Mathar_, Oct 31 2011
%F A069290 Sum_{k=1..n} a(k) ~ n/2 * (log(n) - 1 + 3*gamma), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Jan 31 2019
%F A069290 a(n) = Sum_{k=1..n} (1 - ceiling(n/k^2) + floor(n/k^2)) * k. - _Wesley Ivan Hurt_, Jan 28 2021
%F A069290 a(n) = A000203(A000188(n)). - _Amiram Eldar_, Sep 01 2023
%F A069290 a(n) = Sum_{d|n} d^(1/2)*(1-(-1)^tau(d))/2, [See Mathar comment]. - _Wesley Ivan Hurt_, Jul 09 2025
%e A069290 Square divisors for n=48: {1, 2^2, 4^2}, so a(48) = 1+2+4 = 7.
%t A069290 nn = 102;f[list_, i_] := list[[i]]; a =Table[If[IntegerQ[n^(1/2)], n^(1/2), 0], {n, 1, nn}]; b =Table[1, {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* _Geoffrey Critzer_, Feb 21 2015 *)
%t A069290 f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 20 2020 *)
%o A069290 (PARI) vector(102, n, sumdiv(n, d, issquare(d)*sqrtint(d)))
%o A069290 (PARI) a(n)={my(s=0);fordiv(n,d,if(issquare(d),s+=sqrtint(d)));s;} \\ _Joerg Arndt_, Feb 22 2015
%o A069290 (Python)
%o A069290 from math import prod
%o A069290 from sympy import factorint
%o A069290 def A069290(n): return prod((p**(q//2+1)-1)//(p-1) for p, q in factorint(n).items()) # _Chai Wah Wu_, Jun 14 2021
%Y A069290 Cf. A000005 (tau), A000188, A000203 (sigma), A001620, A005117, A035316, A037213, A046951.
%K A069290 nonn,easy,mult
%O A069290 1,4
%A A069290 _Reinhard Zumkeller_, Mar 14 2002
%E A069290 More terms from Larry Reeves (larryr(AT)acm.org), Jul 01 2002