This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069429 #40 Nov 01 2020 04:10:33 %S A069429 3,16,84,440,2304,12064,63168,330752,1731840,9068032,47480832, %T A069429 248612864,1301753856,6816071680,35689414656,186872201216, %U A069429 978475548672,5123364487168,26826284728320,140464250421248,735480363614208,3851025180000256,20164229625544704,105581277033267200 %N A069429 Half the number of 3 X n binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row. %H A069429 Andrew Howroyd, <a href="/A069429/b069429.txt">Table of n, a(n) for n = 1..1000</a> %H A069429 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-4). %F A069429 Empirical G.f.: x*(3-2*x)/(1-6*x+4*x^2). - _Colin Barker_, Feb 22 2012 %F A069429 Empirical: a(n) = 3*A084326(n) - 2*A084326(n-1). - _R. J. Mathar_, Nov 09 2018 %F A069429 From _Andrew Howroyd_, Oct 27 2020: (Start) %F A069429 The above conjectures are true and follow from formulas given in A069361 and A069396. %F A069429 a(n) = (8^n)/2 - A069361(n) + A069396(n). %F A069429 a(n) = 2^(n-1)*Fibonacci(2*n+2) = A084326(n+1)/2. (End) %e A069429 From _Andrew Howroyd_, Oct 27 2020: (Start) %e A069429 Some of the 2*a(2) = 32 arrays are: %e A069429 0 0 0 0 0 0 0 1 0 1 0 0 0 1 %e A069429 0 0 0 1 1 1 1 0 1 0 1 1 1 0 %e A069429 1 1 1 1 1 1 1 1 0 1 0 0 1 1 %e A069429 (End) %t A069429 LinearRecurrence[{6, -4}, {3, 16}, 100] (* _Jean-François Alcover_, Nov 01 2020 *) %o A069429 (PARI) Vec((3 - 2*x)/(1 - 6*x + 4*x^2) + O(x^30)) \\ _Andrew Howroyd_, Oct 27 2020 %o A069429 (PARI) a(n) = 2^(n-1)*fibonacci(2*n+2) \\ _Andrew Howroyd_, Oct 27 2020 %Y A069429 Cf. 2 X n A000079, n X 1 A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452. %Y A069429 Cf. A084326. %K A069429 nonn,easy %O A069429 1,1 %A A069429 _R. H. Hardin_, Mar 22 2002 %E A069429 Terms a(21) and beyond from _Andrew Howroyd_, Oct 27 2020