cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069461 Number of distinct prime factors of prime(n)^n-1.

This page as a plain text file.
%I A069461 #19 Jul 08 2023 10:41:40
%S A069461 0,1,2,3,3,5,2,6,6,8,7,11,5,7,9,8,5,12,4,13,8,10,4,16,7,12,12,13,6,18,
%T A069461 4,15,10,8,10,19,8,9,8,17,5,21,5,13,16,16,6,21,9,12,9,15,10,20,9,22,9,
%U A069461 17,7,31,7,11,13,21,9,17,11,16,14,21,5,32,7,12,16
%N A069461 Number of distinct prime factors of prime(n)^n-1.
%H A069461 Amiram Eldar, <a href="/A069461/b069461.txt">Table of n, a(n) for n = 1..96</a> (using factordb.com)
%H A069461 Dario Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Factorization using the Elliptic Curve Method.</a>
%H A069461 FactorDB, <a href="http://factordb.com/index.php?query=509%5E97-1">Status of 509^97-1</a>.
%F A069461 a(n) = A001221(A069459(n)).
%e A069461 A000040(8)^8-1 = 19^8 - 1 = 16983563040 = 2^5*3^2*5*17*181*3833, therefore a(8) = 6 and A069462(8) = 11.
%e A069461 A000040(9)^9-1 = 23^9-1 = 1801152661462 = 2*7*11*19*79*7792003, therefore a(9) = 6 and A069462(9) = 6.
%t A069461 Table[PrimeNu[Prime[n]^n - 1], {n, 1, 30}] (* _Amiram Eldar_, Feb 17 2020 *)
%o A069461 (PARI) for(n=1,52,print1(omega(prime(n)^n-1)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
%Y A069461 Cf. A001221, A069459, A069462, A069464.
%K A069461 nonn
%O A069461 1,3
%A A069461 _Reinhard Zumkeller_, Mar 24 2002
%E A069461 More terms from _Hugo Pfoertner_, May 18 2004
%E A069461 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
%E A069461 a(53)-a(75) using factordb.com from _Amiram Eldar_, Feb 17 2020