cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069466 Triangle T(n, k) of numbers of square lattice walks that start and end at origin after 2*n steps and contain exactly k steps to the east, possibly touching origin at intermediate stages.

This page as a plain text file.
%I A069466 #53 Apr 20 2020 02:27:19
%S A069466 1,2,2,6,24,6,20,180,180,20,70,1120,2520,1120,70,252,6300,25200,25200,
%T A069466 6300,252,924,33264,207900,369600,207900,33264,924,3432,168168,
%U A069466 1513512,4204200,4204200,1513512,168168,3432,12870,823680,10090080,40360320,63063000,40360320,10090080,823680,12870
%N A069466 Triangle T(n, k) of numbers of square lattice walks that start and end at origin after 2*n steps and contain exactly k steps to the east, possibly touching origin at intermediate stages.
%C A069466 A Pólya plane walk takes steps (N,E,S,W) along cardinal directions in the plane, visiting only points of Z^2 (cf. Links). T(n,k) is the number of walks departing from and returning to the origin, with exactly 2*k steps along the NS axis and 2*(n-k) steps along the EW direction. Equivalently, triangle T(n,k) is the number of distinct permutations of a 2*n-letter word with letters (N,E,S,W) in multiplicity (k,n-k,k,n-k). Moving only along either NS or EW directions, T(n,0) = T(n,n) = A000894(n). Row sums appear as Equation 4 in the original Pólya article, Sum_{k=0..n} T(n,k) = A002894(n). This identity is proven routinely using Zeilberger's algorithm. - _Bradley Klee_, Aug 12 2018
%H A069466 Muniru A Asiru, <a href="/A069466/b069466.txt">Table of n, a(n) for n = 0..1325</a> (Rows n=0..50, flattened)
%H A069466 A. Bostan, <a href="https://specfun.inria.fr/bostan/HDR.pdf">Calcul Formel pour la Combinatoire des Marches</a>, Habilitation à Diriger des Recherches, Université Paris 13, 2017, page 11.
%H A069466 G. Pólya, <a href="https://eudml.org/doc/158886">Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz</a>, Mathematische Annalen, 84 (1921), 149-160.
%F A069466 Recurrences: T(1, 0) = T(1, 1)=2; T(k, r) = 2*k*(2*k-1)/(k-r)^2 * T(k-1, r); T(k, r) = (k+1-r)^2/r^2 * T(k, r-1).
%F A069466 T(n, k) = binomial(2*n, n) * binomial(n, k)^2.
%F A069466 Sum_{k=0..n} T(n, k) = A002894(n).
%F A069466 From _Bradley Klee_, Aug 12 2018: (Start)
%F A069466 T(n,k) = (2*n)!/((n-k)!*k!)^2.
%F A069466 T(n,k) = C(2*n,2*k)*C(2*(n-k),n-k)*C(2*k,k).
%F A069466 Sum_{k=0..n} T(n,k) = Sum_{k=0..n} C(2*n,2*k)*C(2*(n-k),n-k)*C(2*k,k) = C(2*n,n)^2.
%F A069466 Sum_{k=0..n} T(n,k) = Sum_{k=0..n} (2n)!/(k!(n-k)!)^2 = C(2*n,n)^2.
%F A069466 (End)
%e A069466 Triangle begins:
%e A069466     1,
%e A069466     2,    2,
%e A069466     6,   24,     6,
%e A069466    20,  180,   180,    20,
%e A069466    70, 1120,  2520,  1120,   70,
%e A069466   252, 6300, 25200, 25200, 6300, 252
%e A069466   ...
%e A069466 T(4,2) = 2520 because there are 2520 distinct lattice walks of length 2*4=8 starting and ending at the origin and containing exactly 2 steps to the east.
%e A069466 For T(2,k), the lattice-path words are:
%e A069466 T(2,0):{EEWW, WEEW, WWEE, EWWE, WEWE, EWEW}
%e A069466 T(2,1):{NESW, NEWS, NSEW, NSWE, NWES, NWSE, ENSW, ENWS, ESNW, ESWN, EWNS, EWSN, SNEW, SNWE, SENW, SEWN, SWNE, SWEN, WNES, WNSE, WENS, WESN, WSNE, WSEN}
%e A069466 T(2,2):{NNSS, SNNS, SSNN, NSSN, SNSN, NSNS}
%p A069466 T:=(n,k)->binomial(2*n,n)*(binomial(n,k))^2: seq(seq(T(n,k),k=0..n),n=0..8); # _Muniru A Asiru_, Oct 21 2018
%t A069466 T[k_, r_] := Binomial[2k, k]*Binomial[k, r]^2; Table[T[k, r], {k, 0, 8}, {r, 0, k}] // Flatten (* _Jean-François Alcover_, Nov 21 2012, from explicit formula *)
%o A069466 (GAP) T:=Flat(List([0..8],n->List([0..n],k->Binomial(2*n,n)*(Binomial(n,k))^2))); # _Muniru A Asiru_, Oct 21 2018
%Y A069466 T(2*n, n) = A008977(n).
%Y A069466 Cf. A002894, A000984.
%Y A069466 Cf. A007318 (Pascal, m=1), this sequence (m=2), A320824 (m=3).
%K A069466 easy,nice,nonn,tabl
%O A069466 0,2
%A A069466 _Martin Wohlgemuth_, Mar 24 2002