This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069488 #28 Mar 02 2019 02:48:11 %S A069488 113,131,137,173,179,197,311,313,317,373,379,419,431,479,613,617,619, %T A069488 673,719,797,971,1117,1171,1319,1373,1973,1979,2311,2371,2971,3119, %U A069488 3137,3719,3797,4111,4373,6113,6131,6173,6197,6719,6737 %N A069488 Primes > 100 in which every substring of length 2 is also prime. %C A069488 Minimum number of digits is taken to be 3 as all two-digit primes would be trivial members. %C A069488 From _Robert G. Wilson v_, May 12 2014: (Start) %C A069488 The number of terms below 10^n: 0, 0, 21, 46, 123, 329, 810, 1733, 3985, 9710, ..., . %C A069488 The least term with n digits is: 113, 1117, 11113, 111119, ..., see A090534. %C A069488 The largest term with n digits is: 971, 9719, 97973, 979717, ..., see A242377. %C A069488 The digits 2, 4, 5, 6 and 8 can only appear at the beginning of the prime and the digit 0 never appears. But the digits 1, 3, 7 and 9 can appear anywhere, yet only 1,1 can appear as a pair. %C A069488 \10^n %C A069488 d\ 1&2 3 4 5 6 7 8 9 10 Total % @ 10^10 %C A069488 \ %C A069488 1 0 19 34 146 648 1162 2678 8037 22740 39.188034 %C A069488 2 0 0 3 6 27 18 66 175 449 0.816186 %C A069488 3 0 14 19 63 326 712 1526 3855 11040 19.403018 %C A069488 4 0 3 2 13 54 92 143 384 1031 1.895550 %C A069488 5 0 0 0 9 17 24 45 176 426 0.763995 %C A069488 6 0 4 6 4 24 66 146 233 630 1.224834 %C A069488 7 0 14 20 100 436 907 1980 5442 15421 26.875285 %C A069488 8 0 0 3 6 24 25 37 176 388 0.721797 %C A069488 9 0 9 13 38 157 361 763 1790 5125 9.111301 %C A069488 Total 0 63 100 385 1713 3367 7384 20268 57250 100.00000 %C A069488 (End) %H A069488 Robert G. Wilson v, <a href="/A069488/b069488.txt">Table of n, a(n) for n = 1..10101</a> (first 1000 terms from Reinhard Zumkeller) %e A069488 3719 is a term as the three substrings of length 2, i.e., 37, 71 and 19, are all prime. %t A069488 Do[ If[ Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 2, 1]]]] == {True}, Print[ Prime[n]]], {n, PrimePi[100] + 1, 500}] %o A069488 (Haskell) %o A069488 a069488 n = a069488_list !! (n-1) %o A069488 a069488_list = filter f $ dropWhile (<= 100) a038618_list where %o A069488 f x = x < 10 || a010051 (x `mod` 100) == 1 && f (x `div` 10) %o A069488 -- _Reinhard Zumkeller_, Apr 07 2014 %Y A069488 Cf. A069489 and A069490. %Y A069488 Cf. A010051, subsequence of zeroless primes: A038618. %K A069488 nonn,base %O A069488 1,1 %A A069488 _Amarnath Murthy_, Mar 30 2002 %E A069488 Edited, corrected and extended by _Robert G. Wilson v_, Apr 12 2002