This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069492 #28 Sep 11 2024 00:32:23 %S A069492 1,32,64,128,243,256,512,729,1024,2048,2187,3125,4096,6561,7776,8192, %T A069492 15552,15625,16384,16807,19683,23328,31104,32768,46656,59049,62208, %U A069492 65536,69984,78125,93312,100000,117649,124416,131072,139968,161051 %N A069492 5-full numbers: if a prime p divides k then so does p^5. %C A069492 a(m) mod prime(n) > 0 for m < A258602(n); a(A258602(n)) = A050997(n) = prime(n)^5. - _Reinhard Zumkeller_, Jun 06 2015 %H A069492 Reinhard Zumkeller, <a href="/A069492/b069492.txt">Table of n, a(n) for n = 1..10000</a> (terms n=148..10000 corrected by Andrew Howroyd) %F A069492 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^4*(p-1))) = 1.0695724994489739263413712783666538355049945684326048537289707764272637... - _Amiram Eldar_, Jul 09 2020 %o A069492 (PARI) for(n=1,250000,if(n*sumdiv(n,d,isprime(d)/d^5)==floor(n*sumdiv(n,d,isprime(d)/d^5)),print1(n,","))) %o A069492 (PARI) \\ Gen(limit,k) defined in A036967. %o A069492 Gen(170000, 5) \\ _Andrew Howroyd_, Sep 10 2024 %o A069492 (Haskell) %o A069492 import Data.Set (singleton, deleteFindMin, fromList, union) %o A069492 a069492 n = a069492_list !! (n-1) %o A069492 a069492_list = 1 : f (singleton z) [1, z] zs where %o A069492 f s q5s p5s'@(p5:p5s) %o A069492 | m < p5 = m : f (union (fromList $ map (* m) ps) s') q5s p5s' %o A069492 | otherwise = f (union (fromList $ map (* p5) q5s) s) (p5:q5s) p5s %o A069492 where ps = a027748_row m %o A069492 (m, s') = deleteFindMin s %o A069492 (z:zs) = a050997_list %o A069492 -- _Reinhard Zumkeller_, Jun 03 2015 %o A069492 (Python) %o A069492 from math import gcd %o A069492 from sympy import integer_nthroot, factorint %o A069492 def A069492(n): %o A069492 def bisection(f,kmin=0,kmax=1): %o A069492 while f(kmax) > kmax: kmax <<= 1 %o A069492 while kmax-kmin > 1: %o A069492 kmid = kmax+kmin>>1 %o A069492 if f(kmid) <= kmid: %o A069492 kmax = kmid %o A069492 else: %o A069492 kmin = kmid %o A069492 return kmax %o A069492 def f(x): %o A069492 c = n+x %o A069492 for t in range(1,integer_nthroot(x,9)[0]+1): %o A069492 if all(d<=1 for d in factorint(t).values()): %o A069492 for u in range(1,integer_nthroot(s:=x//t**9,8)[0]+1): %o A069492 if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()): %o A069492 for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1): %o A069492 if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()): %o A069492 for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1): %o A069492 if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()): %o A069492 c -= integer_nthroot(z//y**6,5)[0] %o A069492 return c %o A069492 return bisection(f,n,n) # _Chai Wah Wu_, Sep 10 2024 %Y A069492 Cf. A036967, A036966, A001694. %Y A069492 Cf. A050997. %Y A069492 Cf. A258602. %K A069492 easy,nonn %O A069492 1,2 %A A069492 _Benoit Cloitre_, Apr 15 2002