cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069494 Numbers n such that (reversal(n))^3 = reversal(n^3). Ignore leading 0's.

This page as a plain text file.
%I A069494 #11 Oct 22 2021 21:53:53
%S A069494 0,1,2,7,10,11,20,70,100,101,110,111,200,700,1000,1001,1010,1011,1100,
%T A069494 1101,1110,2000,7000,10000,10001,10010,10011,10100,10101,10110,11000,
%U A069494 11001,11010,11011,11100,20000,70000,100000,100001,100010,100011,100100,100101
%N A069494 Numbers n such that (reversal(n))^3 = reversal(n^3). Ignore leading 0's.
%C A069494 For an arithmetical function f, call the arguments n such that f(reverse(n)) = reverse(f(n)) the "palinpoints" of f. This sequence is the sequence of palinpoints of f(n) = n^3.
%e A069494 Let f(n) = n^3. Then f(1011) = 1033364331, f(1101) = 1334633301, so f(reverse(1011)) = reverse(f(1011)). Therefore 1011 belongs to the sequence.
%p A069494 r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
%p A069494 q:= n-> is(r(n^3)=r(n)^3):
%p A069494 select(q, [$0..200000])[];  # _Alois P. Heinz_, Oct 22 2021
%t A069494 rev[n_] := FromDigits[Reverse[IntegerDigits[n]]]; f[n_] := n^3; Select[Range[10^5], f[rev[ # ]] == rev[f[ # ]] &]
%Y A069494 Cf. A000578, A004086, A085315.
%K A069494 nonn,base
%O A069494 1,3
%A A069494 _Joseph L. Pe_, Apr 15 2002
%E A069494 More terms from _Alois P. Heinz_, Oct 22 2021