This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069496 #39 Jan 05 2020 08:31:18 %S A069496 17,71,881,1151,2591,3527,4049,15137,20807,34847,46817,69191,83231, %T A069496 103967,112337,149057,176417,179999,206081,281249,362951,388961, %U A069496 438047,472391,478241,538721,649799,734471,808991,960497,1080449,1143071 %N A069496 Smaller member of a twin prime pair with a square sum. %C A069496 All members of this sequence have digital root 8. - _J. W. Helkenberg_, Jul 24 2013 %C A069496 First bisection of A232878. - _Gary Croft_, Dec 05 2013 %H A069496 T. D. Noe, <a href="/A069496/b069496.txt">Table of n, a(n) for n = 1..10000</a> %H A069496 Author?, <a href="http://www.kfki.hu/chemonet/TermVil/tv2002/tv0204/tartalom.html">Title?</a> (no longer exists) %F A069496 a(n) = (A037072(n)-2)/2. %F A069496 a(n) = A118593(n) - 2. - _Zerinvary Lajos_, Jul 31 2006 %e A069496 71 is a term as the smaller member of the twin prime pair (71,73) as 71+73 = 144 = 12^2. %p A069496 isa := n -> isprime(n) and isprime(n+2) and issqr(2*n+2): %p A069496 select(isa, [$4..1000000]); # _Peter Luschny_, Jan 05 2020 %t A069496 First/@Select[Partition[Prime[Range[9*10^4]],2,1],Differences[#]=={2} && IntegerQ[Sqrt[Total[#]]] &] (* _Jayanta Basu_, May 26 2013 *) %o A069496 (PARI) t(n, p=3) = {while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2} %o A069496 for(n=1, 1e4, if(issquare(2*t(n)+2), print1(t(n), ", "))); \\ _Altug Alkan_, Mar 14 2016 %Y A069496 Cf. A118593, A232878. %K A069496 nonn %O A069496 1,1 %A A069496 _Amarnath Murthy_, Mar 30 2002 %E A069496 More terms from _Sascha Kurz_, Apr 01 2002