This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069512 #10 Feb 14 2021 19:25:03 %S A069512 2,14,22,118,124,222,1128,1144,1224,2222,11148,11228,11244,12224, %T A069512 22222,111188,111248,111444,112228,112244,122224,222222,1111288, %U A069512 1111448,1112248,1112444,1122228,1122244,1222224,2222222,11111488,11112288,11112448,11114444 %N A069512 Geometric mean of digits = 2 and digits are in nondecreasing order. %C A069512 No number is obtainable by permuting the digits of other members - only one with ascending order of digits is included. Product of the digits = 2^k where k is the number of digits. %H A069512 Michael S. Branicky, <a href="/A069512/b069512.txt">Table of n, a(n) for n = 1..10000</a> %e A069512 1128 is a term but 2118 is not. %t A069512 a = {}; b = 2; Do[c = Apply[ Times, IntegerDigits[n]]/b^Floor[ Log[10, n] + 1]; If[c == 1 && Position[a, FromDigits[ Sort[ IntegerDigits[n]]]] == {}, Print[n]; a = Append[a, n]], {n, 1, 10^7}] %o A069512 (Python) %o A069512 from math import prod %o A069512 from sympy.utilities.iterables import multiset_combinations %o A069512 def aupton(terms): %o A069512 n, digits, alst, powsexps2 = 0, 1, [], [(1,0), (2,1), (4,2), (8,3)] %o A069512 while n < terms: %o A069512 target = 2**digits %o A069512 mcstr = "".join(str(d)*(digits//max(1, r)) for d, r in powsexps2) %o A069512 for mc in multiset_combinations(mcstr, digits): %o A069512 if prod(map(int, mc)) == target: %o A069512 n += 1 %o A069512 alst.append(int("".join(mc))) %o A069512 if n == terms: break %o A069512 else: digits += 1 %o A069512 return alst %o A069512 print(aupton(34)) # _Michael S. Branicky_, Feb 14 2021 %Y A069512 Cf. A061426, A069516, A069518. %K A069512 nonn,base %O A069512 1,1 %A A069512 _Amarnath Murthy_, Mar 30 2002 %E A069512 Edited and extended by _Robert G. Wilson v_, Apr 01 2002 %E A069512 a(31) corrected by and a(33) and beyond from _Michael S. Branicky_, Feb 14 2021