This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069518 #12 Apr 29 2021 00:57:08 %S A069518 4,28,44,188,248,444,1488,2288,2448,4444,12888,14488,22488,24448, %T A069518 44444,118888,124888,144488,222888,224488,244448,444444,1148888, %U A069518 1228888,1244888,1444488,2224888,2244488,2444448,4444444,11288888,11448888,12248888,12444888 %N A069518 Geometric mean of digits = 4 and digits are in nondecreasing order. %C A069518 No number is obtainable by permuting the digits of other members - only one with ascending order of digits is included. %H A069518 Michael S. Branicky, <a href="/A069518/b069518.txt">Table of n, a(n) for n = 1..10000</a> %e A069518 1488 is a term but 1848 is not. %t A069518 a = {}; b = 4; Do[c = Apply[ Times, IntegerDigits[n]]/b^Floor[ Log[10, n] + 1]; If[c == 1 && Position[a, FromDigits[ Sort[ IntegerDigits[n]]]] == {}, Print[n]; a = Append[a, n]], {n, 1, 10^7}] %o A069518 (Python) %o A069518 from math import prod %o A069518 from sympy.utilities.iterables import multiset_combinations %o A069518 def auptod(terms): %o A069518 n, digits, alst, powsexps2 = 0, 1, [], [(1, 0), (2, 1), (4, 2), (8, 3)] %o A069518 while n < terms: %o A069518 target = 4**digits %o A069518 mcstr = "".join(str(d)*(digits//max(1, r//2)) for d, r in powsexps2) %o A069518 for mc in multiset_combinations(mcstr, digits): %o A069518 if prod(map(int, mc)) == target: %o A069518 n += 1 %o A069518 alst.append(int("".join(mc))) %o A069518 if n == terms: break %o A069518 else: digits += 1 %o A069518 return alst %o A069518 print(auptod(34)) # _Michael S. Branicky_, Apr 28 2021 %Y A069518 Cf. A061428, A069512, A069516. %K A069518 nonn,base %O A069518 1,1 %A A069518 _Amarnath Murthy_, Mar 30 2002 %E A069518 Edited and extended by _Robert G. Wilson v_, Apr 01 2002 %E A069518 Name edited and a(31) and beyond from _Michael S. Branicky_, Apr 28 2021