This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069525 #14 Sep 04 2019 23:58:13 %S A069525 6,6,6,24,15,6,42,24,0,60,33,24,312,42,15,240,51,0,114,60,42,132,1104, %T A069525 24,150,312,0,420,1131,60,1023,2112,33,204,105,0,222,114,312,240,123, %U A069525 42,1032,132,0,1104,141,240,12201,150,51,312,1113,0,330,4200,114,4002,2301 %N A069525 Smallest multiple of n with digit sum = 6, or 0 if no such number exists, e.g. a(9k)= 0. %C A069525 In addition to those divisible by 9, all numbers n divisible by 239, 271 or 803 have a(n)=0. - _Robert Israel_, Sep 04 2019 %H A069525 Robert Israel, <a href="/A069525/b069525.txt">Table of n, a(n) for n = 1..2500</a> %F A069525 a(n) = n*A088395(n). - _R. J. Mathar_, Aug 06 2019 %p A069525 N:= 1000: # to get a(1)..a(N) %p A069525 nextL:= proc(L) %p A069525 local m,q,Lp; %p A069525 for m from 1 do %p A069525 if L[m] > 0 then %p A069525 if m = LinearAlgebra:-Dimension(L) then return <5,0$(m-1),1> %p A069525 else Lp:= L; %p A069525 Lp[1]:= L[m]-1; %p A069525 Lp[2..m]:= 0; %p A069525 Lp[m+1]:= L[m+1]+1; %p A069525 return Lp; %p A069525 fi %p A069525 fi %p A069525 od; %p A069525 end proc: %p A069525 nogo:= proc(n) local m,a2,a5,S,S2,S3,i,j; %p A069525 a2:= padic:-ordp(n,2); %p A069525 a5:= padic:-ordp(n,5); %p A069525 m:= numtheory:-order(10,n/(2^a2*5^a5))+max(a2,a5); %p A069525 S:= {seq(10^i mod n, i=0..m-1)}; %p A069525 S2:= {seq(seq(S[i]+S[j] mod n,j=1..i),i=1..nops(S))}; %p A069525 S3:= {seq(seq(S[i]+ S2[j] mod n, j=1..nops(S2)),i=1..nops(S))}; %p A069525 evalb(S3 intersect map(t -> -t mod n, S3) = {}); %p A069525 end proc: %p A069525 Agenda:= remove(t -> (t mod 9=0 or t mod 239=0 or t mod 271=0 or t mod 803=0, {$1..N}): %p A069525 L:= <6>: x:= 6: %p A069525 A:= Vector(N): %p A069525 while Agenda <> {} and x < 10^20 do %p A069525 x:= add(L[i]*10^(i-1),i=1..LinearAlgebra:-Dimension(L)); %p A069525 found,Agenda:= selectremove(t -> x mod t = 0, Agenda); %p A069525 if found <> {} then %p A069525 A[convert(found,list)]:= x; %p A069525 fi; %p A069525 L:= nextL(L); %p A069525 od: %p A069525 Agenda:= remove(nogo,Agenda); %p A069525 if Agenda <> {} then printf("Values not found for %a\n",Agenda) fi; %p A069525 convert(A,list); # _Robert Israel_, Sep 04 2019 %t A069525 Array[If[AnyTrue[Mod[#, {9, 239, 271, 803}], # == 0 &], 0, Block[{k = 1}, While[Total@ IntegerDigits[k #] != 6, k++]; k #]] &, 59] (* _Michael De Vlieger_, Sep 04 2019 *) %Y A069525 Cf. A062220, A069521, A069522, A069523, A069524. %K A069525 base,nonn %O A069525 1,1 %A A069525 _Amarnath Murthy_, Apr 01 2002 %E A069525 More terms from _Ray Chandler_, Jul 30 2003