This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069529 #10 Feb 14 2024 19:07:24 %S A069529 19,28,0,28,55,0,28,64,0,190,55,0,91,28,0,64,136,0,19,280,0,154,46,0, %T A069529 325,208,0,28,145,0,217,64,0,136,280,0,37,190,0,280,82,0,172,352,0,46, %U A069529 235,0,343,550,0,208,424,0,55,280,0,406,118,0,244,1054,0,64,325,0,1072 %N A069529 Smallest multiple of n with digit sum = 10, or 0 if no such number exists, e.g. a(3k)= 0. %C A069529 a(n) = 0 if n is a multiple of 3, 1111, 2849, 3367, 4649 or 5291. %H A069529 Robert Israel, <a href="/A069529/b069529.txt">Table of n, a(n) for n = 1..10000</a> %p A069529 unfinished:= true: V:= Vector(1000): %p A069529 V0:= select(t -> igcd(t, 3*4649) = 1 and t mod 1111 <> 0 and t mod 2849 <> 0 and t mod 3367 <> 0 and t mod 5291 <> 0, {$1..1000}): %p A069529 for i1 from 0 while unfinished do %p A069529 for i2 from 0 to i1 while unfinished do %p A069529 for i3 from 0 to i2 while unfinished do %p A069529 for i4 from 0 to i3 while unfinished do %p A069529 for i5 from 0 to i4 while unfinished do %p A069529 for i6 from 0 to i5 while unfinished do %p A069529 for i7 from 0 to i6 while unfinished do %p A069529 for i8 from 0 to i7 while unfinished do %p A069529 for i9 from 0 to i8 while unfinished do %p A069529 for i10 from 0 to i9 while unfinished do %p A069529 v:= 10^i1 + 10^i2 + 10^i3 + 10^i4 + 10^i5 + 10^i6 + 10^i7 + 10^i8 + 10^i9 + 10^i10; %p A069529 if convert(convert(v,base,10),`+`) <> 10 then next fi; %p A069529 dv:= numtheory:-divisors(v); %p A069529 for s in V0 intersect dv do %p A069529 V[s]:= v; %p A069529 od; %p A069529 V0:= V0 minus dv; %p A069529 unfinished:= evalb(V0 <> {}); %p A069529 od od od od od od od od od od: %p A069529 convert(V,list); # _Robert Israel_, Feb 14 2024 %Y A069529 Cf. A069521, A069522, A069523, A069524, A069525, A069526, A069527, A069528. %K A069529 base,nonn %O A069529 1,1 %A A069529 _Amarnath Murthy_, Apr 01 2002 %E A069529 More terms from _Sascha Kurz_, Apr 08 2002