cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069534 Smallest multiple of 5 with digit sum n.

This page as a plain text file.
%I A069534 #23 Sep 16 2020 01:59:53
%S A069534 10,20,30,40,5,15,25,35,45,55,65,75,85,95,195,295,395,495,595,695,795,
%T A069534 895,995,1995,2995,3995,4995,5995,6995,7995,8995,9995,19995,29995,
%U A069534 39995,49995,59995,69995,79995,89995,99995,199995,299995,399995,499995,599995
%N A069534 Smallest multiple of 5 with digit sum n.
%C A069534 a(6) onwards the pattern is evident.
%H A069534 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,10,-10).
%F A069534 a(n) = ((n+4)%9+1)*10^floor((n+4)/9)-5 for all n > 4, where % is the binary mod/remainder operator. - _M. F. Hasler_, Sep 16 2016
%F A069534 From _Chai Wah Wu_, Sep 15 2020: (Start)
%F A069534 a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n > 14.
%F A069534 G.f.: 5*x*(72*x^13 - 18*x^12 - 18*x^11 - 18*x^10 - 18*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 - 7*x^4 + 2*x^3 + 2*x^2 + 2*x + 2)/((x - 1)*(10*x^9 - 1)). (End)
%F A069534 a(n) = 5 * A077492(n). - _Alois P. Heinz_, Sep 15 2020
%t A069534 t={}; Do[i=5; While[Total[IntegerDigits[i]]!=n,i=i+5]; AppendTo[t,i],{n,46}]; t (* _Jayanta Basu_, May 19 2013 *)
%t A069534 With[{f=5*Range[200000]},Flatten[Table[Select[f,Total[IntegerDigits[#]] == n&,1],{n,50}]]] (* _Harvey P. Dale_, Dec 31 2013 *)
%o A069534 (PARI) A069534(n)=(((n+4)%9+1)*10^((n+4)\9)-5)*10^(n<5) \\ _M. F. Hasler_, Sep 16 2016
%Y A069534 Cf. A069521 to A069530, A069532, A069533.
%Y A069534 Cf. A077492.
%K A069534 base,nonn,easy
%O A069534 1,1
%A A069534 _Amarnath Murthy_, Apr 01 2002
%E A069534 More terms from _Ray Chandler_, Jul 28 2003