cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069567 Smaller of two consecutive primes which are anagrams of each other.

This page as a plain text file.
%I A069567 #55 Apr 25 2025 16:00:27
%S A069567 1913,18379,19013,25013,34613,35617,35879,36979,37379,37813,40013,
%T A069567 40213,40639,45613,48091,49279,51613,55313,56179,56713,58613,63079,
%U A069567 63179,64091,65479,66413,74779,75913,76213,76579,76679,85313,88379,90379,90679,93113,94379,96079
%N A069567 Smaller of two consecutive primes which are anagrams of each other.
%C A069567 Smaller members of Ormiston prime pairs.
%C A069567 Given the n-th prime, it is occasionally possible to form the (n+1)th prime using the same digits in a different order. Such a pair is called an Ormiston pair.
%C A069567 Ormiston pairs occur rarely but randomly. It is thought that there are infinitely many but this has not been proved. They always differ by a multiple of 18. Ormiston triples also exist - see A075093.
%C A069567 "Anagram" means that both primes must not only use the same digits but must use each digit the same number of times.  [From _Harvey P. Dale_, Mar 06 2012]
%C A069567 Dickson's conjecture would imply that the sequence is infinite, e.g. that there are infinitely many k for which 1913+3972900*k and 1931+3972900*k form an Ormiston pair. - _Robert Israel_, Feb 23 2017
%D A069567 Andy Edwards, Ormiston Pairs, Australian Mathematics Teacher, Vol. 58, No. 2 (2002), pp. 12-13.
%H A069567 Charles R Greathouse IV, <a href="/A069567/b069567.txt">Table of n, a(n) for n = 1..10000</a>
%H A069567 Jens Kruse Andersen, <a href="http://primerecords.dk/ormiston_tuples.htm">Ormiston Tuples</a>
%H A069567 Andy Edwards, <a href="https://web.archive.org/web/20200401140701/https://www.aamt.edu.au/content/download/742/19588/file/amt-s.pdf">Ormiston Pairs</a> [Archive machine link]; <a href="/A069567/a069567.pdf">local copy</a> [with permission]
%H A069567 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RearrangementPrimePair.html">Rearrangement Prime Pair</a>.
%e A069567 1913 and 1931 are two successive primes.
%e A069567 Although 179 and 197 are composed of the same digits, they do not form an Ormiston pair as several other primes intervene (i.e. 181, 191, 193).
%p A069567 N:= 10^6: # to get all terms <= N
%p A069567 R:= NULL: p:= 3: q:= 5:
%p A069567 while p <= N do
%p A069567   p:= q;
%p A069567   q:= nextprime(q);
%p A069567   if q-p mod 18 = 0 and sort(convert(p,base,10)) = sort(convert(q,base,10)) then
%p A069567     R:= R, p
%p A069567   fi
%p A069567 od:
%p A069567 R; # _Robert Israel_, Feb 23 2017
%t A069567 Prime[ Select[ Range[10^4], Sort[ IntegerDigits[ Prime[ # ]]] == Sort[ IntegerDigits[ Prime[ # + 1]]] & ]]
%t A069567 a = {1}; b = {2}; Do[b = Sort[ IntegerDigits[ Prime[n]]]; If[a == b, Print[ Prime[n - 1], ", ", Prime[n]]]; a = b, {n, 1, 10^4}]
%t A069567 Transpose[Select[Partition[Prime[Range[8600]],2,1],Sort[IntegerDigits[ First[#]]] == Sort[ IntegerDigits[Last[#]]]&]][[1]] (* _Harvey P. Dale_, Mar 06 2012 *)
%o A069567 (PARI) is(n)=isprime(n)&&vecsort(Vec(Str(n)))==vecsort(Vec(Str(nextprime(n+1)))) \\ _Charles R Greathouse IV_, Aug 09 2011
%o A069567 (PARI) p=2;forprime(q=3,1e5,if((q-p)%18==0&&vecsort(Vec(Str(p)))==vecsort(Vec(Str(q))),print1(p", "));p=q) \\ _Charles R Greathouse IV_, Aug 09 2011, minor edits by _M. F. Hasler_, Oct 11 2012
%o A069567 (Haskell)
%o A069567 import Data.List (sort)
%o A069567 a069567 n = a069567_list !! (n-1)
%o A069567 a069567_list = f a000040_list where
%o A069567    f (p:ps@(p':_)) = if sort (show p) == sort (show p')
%o A069567                      then p : f ps else f ps
%o A069567 -- _Reinhard Zumkeller_, Apr 03 2015
%o A069567 (Python)
%o A069567 from sympy import nextprime
%o A069567 from itertools import islice
%o A069567 def agen(): # generator of terms
%o A069567     p, hp, q, hq = 2, "2", 3, "3"
%o A069567     while True:
%o A069567         if hp == hq: yield p
%o A069567         p, q = q, nextprime(q)
%o A069567         hp, hq = hq, "".join(sorted(str(q)))
%o A069567 print(list(islice(agen(), 38))) # _Michael S. Branicky_, Feb 19 2024
%Y A069567 Cf. A072274, A075093, A161160, A066540.
%Y A069567 Cf. A000040, A028906.
%K A069567 nonn,base,nice
%O A069567 1,1
%A A069567 _Amarnath Murthy_, Mar 24 2002
%E A069567 Comments and references from Andy Edwards (AndynGen(AT)aol.com), Jul 09 2002
%E A069567 Edited by _Robert G. Wilson v_, Jul 15 2002 and Aug 29 2002
%E A069567 Minor edits by _Ray Chandler_, Jul 16 2009