This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069610 #15 Aug 03 2021 11:47:42 %S A069610 8,3,9,11,7,21,23,3,7,29,3,99,9,93,1,39,33,21,137,123,57,13,191,3,163, %T A069610 9,143,63,21,157,521,163,161,43,161,109,107,121,423,57,71,7,173,469, %U A069610 107,57,177,411,49,149,61,291,413,271,299,693,349,149,73,299,271,521 %N A069610 a(1) = 8; a(n) = smallest number such that the juxtaposition a(1)a(2)...a(n) is a prime. %e A069610 a(4) = 11 and the number 83911 is a prime. %t A069610 a[1] = 8; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 63}] (* _Robert G. Wilson v_, Aug 05 2005 *) %o A069610 (Python) %o A069610 from sympy import isprime %o A069610 def aupton(terms): %o A069610 alst, astr = [8], '8' %o A069610 for n in range(2, terms+1): %o A069610 an = 1 %o A069610 while not isprime(int(astr + str(an))): an += 2 %o A069610 alst, astr = alst + [an], astr + str(an) %o A069610 return alst %o A069610 print(aupton(62)) # _Michael S. Branicky_, Aug 03 2021 %Y A069610 Cf. A046258, A074344, A092528, A069603, A069605, A069606, A069607, A069608, A069609, A069610, A069611, A111525. %K A069610 nonn,base %O A069610 1,1 %A A069610 _Amarnath Murthy_, Mar 26 2002 %E A069610 More terms from _Jason Earls_, Jun 13 2002