cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069626 Number of sets of integers larger than one whose least common multiple is n.

This page as a plain text file.
%I A069626 #51 Mar 15 2024 06:19:16
%S A069626 1,1,1,2,1,5,1,4,2,5,1,22,1,5,5,8,1,22,1,22,5,5,1,92,2,5,4,22,1,109,1,
%T A069626 16,5,5,5,200,1,5,5,92,1,109,1,22,22,5,1,376,2,22,5,22,1,92,5,92,5,5,
%U A069626 1,1874,1,5,22,32,5,109,1,22,5,109,1,1696,1,5,22,22,5,109,1,376,8,5,1,1874,5,5,5,92,1,1874,5,22
%N A069626 Number of sets of integers larger than one whose least common multiple is n.
%C A069626 a(p) = 1, a(p*q) = 5, a(p^2*q) = 13, a(p^3) = 4, a(p^4) = 8 etc. where p and q are primes. It can be shown that a(p^k) = 2^(k-1). Problem: find an expression for a(N) when N = p^a*q^b*r^c*..., p,q,r are primes.
%H A069626 Antti Karttunen, <a href="/A069626/b069626.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H A069626 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%H A069626 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%F A069626 a(n) = Sum_{ d divides n } mu(n/d)*2^(tau(d)-1). - _Vladeta Jovovic_, Jul 07 2003
%F A069626 a(n) >= A286518, a(n) >= A318670. - _Antti Karttunen_, Feb 17 2024
%F A069626 a(n) = A076078(n)/2, for n > 1. - _Ridouane Oudra_, Mar 12 2024
%e A069626 a(6) = 5 as there are five such sets of natural numbers larger than one whose least common multiple is six: {6}, {2, 6}, {3, 6}, {2, 3} and {2, 3, 6}.
%e A069626 a(12) = 22 from {12}, {4,3}, {2,4,3}, {4,6}, {2,4,6}, {4,3,6}, {2,4,3,6}, {2,12}, {4,12}, {2,4,12}, {3,12}, {2,3,12}, {4,3,12}, {2,4,3,12}, {6,12}, {2,6,12}, {4,6,12}, {2,4,6,12}, {3,6,12}, {2,3,6,12}, {4,3,6,12}, {2,4,3,6,12}.
%e A069626 From _Antti Karttunen_, Feb 18 2024: (Start)
%e A069626 a(1) = 1 as there is only one set that satisfies the criteria, namely, an empty set {}, whose lcm is 1.
%e A069626 a(2) = 1 as the only set that satisfies the criteria is a singleton set {2}.
%e A069626 (End)
%p A069626 with(numtheory): seq(add(mobius(n/d)*2^(tau(d)-1), d in divisors(n)), n=1..80); # _Ridouane Oudra_, Mar 12 2024
%t A069626 a[n_] := Sum[ MoebiusMu[n/d] * 2^(DivisorSigma[0, d] - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 92}](* _Jean-François Alcover_, Nov 30 2011, after _Vladeta Jovovic_ *)
%o A069626 (Haskell)  -- following _Vladeta Jovovic_'s formula.
%o A069626 a069626 n = sum $
%o A069626    map (\d -> (a008683 (n `div` d)) * 2 ^ (a000005 d - 1)) $ a027750_row n
%o A069626 -- _Reinhard Zumkeller_, Jun 12 2015, Feb 07 2011
%o A069626 (APL, Dyalog dialect)
%o A069626 divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
%o A069626 A069626 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{∧/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (quite taxing on memory) - _Antti Karttunen_, Feb 18 2024
%o A069626 (PARI) A069626(n) = sumdiv(n,d,moebius(n/d)*2^(numdiv(d)-1)); \\ _Antti Karttunen_, Feb 18 2024
%Y A069626 A000005, A008683, A286518, A318670.
%Y A069626 Möbius transform of A100577.
%Y A069626 Cf. also A045778 (number of sets of integers > 1 whose product is n).
%Y A069626 Cf. A076078.
%K A069626 nonn,nice,easy
%O A069626 1,4
%A A069626 _Amarnath Murthy_, Mar 27 2002
%E A069626 Corrected and extended by _Naohiro Nomoto_, Apr 25 2002
%E A069626 Definition and examples clarified by _Antti Karttunen_, Feb 18 2024