cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069638 "Sorted" sum of two previous terms, beginning with 0,1. "Sorted" means to sort the digits of the sum in ascending order.

This page as a plain text file.
%I A069638 #28 Aug 31 2022 16:00:49
%S A069638 0,1,1,2,3,5,8,13,12,25,37,26,36,26,26,25,15,4,19,23,24,47,17,46,36,
%T A069638 28,46,47,39,68,17,58,57,115,127,224,135,359,449,88,357,445,28,347,
%U A069638 357,47,44,19,36,55,19,47,66,113,179,229,48,277,235,125,36,116,125,124,249,337
%N A069638 "Sorted" sum of two previous terms, beginning with 0,1. "Sorted" means to sort the digits of the sum in ascending order.
%C A069638 The maximum value in this sequence is 667. After the 75th term, the next 120 terms (a(76) - a(195)) repeat as a group infinitely.
%H A069638 Zak Seidov, <a href="/A069638/b069638.txt">Table of n, a(n) for n = 0..1000</a>
%F A069638 a(n) = SORT[a(n-1) + a(n-2)].
%e A069638 a(8)=12 because a(7)+a(6)=13+8=21 and the digits of 21 sorted in ascending order = 12.
%e A069638 Also a(17)=4 because a(16)+a(15)=15+25=40 and the digits of 40 sorted in ascending order = 04, or just 4;
%p A069638 a:= proc(n) option remember; `if`(n<2, n, parse(cat(
%p A069638       sort(convert(a(n-1)+a(n-2), base, 10))[])))
%p A069638     end:
%p A069638 seq(a(n), n=0..77);  # _Alois P. Heinz_, Aug 31 2022
%t A069638 a[0]:=0
%t A069638 a[1]:=1
%t A069638 a[n_] := a[n]=FromDigits[Sort[IntegerDigits[a[n-1]+a[n-2]]]] (* _Peter J. C. Moses_, Feb 08 2014 *)
%t A069638 nxt[{a_,b_}]:={b,FromDigits[Sort[IntegerDigits[a+b]]]}; NestList[nxt,{0,1},70][[All,1]] (* _Harvey P. Dale_, Jul 27 2020 *)
%o A069638 (Python)
%o A069638 a, terms = [0, 1], 66
%o A069638 [a.append(int("".join(sorted(str(a[-2]+a[-1]))))) for n in range(2, terms)]
%o A069638 print(a) # _Michael S. Branicky_, Aug 31 2022
%Y A069638 Cf. A000045, A001129, A004185, A237575, A237671.
%K A069638 nonn,base
%O A069638 0,4
%A A069638 _Gil Broussard_, Jan 16 2004