cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069648 a(1) = 1, otherwise smallest m > 1 such that the sum of digits of m^n is k^n for some k > 1.

Original entry on oeis.org

1, 2, 2, 11, 47, 46, 983, 193534, 676644395
Offset: 1

Views

Author

Amarnath Murthy, Apr 04 2002

Keywords

Comments

n-th root of A069647(n).
Probably k = 2 in all cases. - Charles R Greathouse IV, Feb 26 2014

Crossrefs

Cf. A069647.

Programs

  • PARI
    a237992(maxn, maxm) = {
      print1("1, ");
      for(n=1, maxn,
        for(m=2, maxm,
          t=eval(Vec(Str(m^n)));
          d=sum(i=1, #t, t[i]);
          if(d>1 && ispower(d, n), print1(m, ", "); break())
        )
      )
    }
    a237992(8, 1000000) \\ Colin Barker, Feb 23 2014
    
  • PARI
    a(n)=if(n==1,return(1)); my(t=2^n,t3=3^n,k,s); while((s=sumdigits(k++^n))=t3 && ispower(s,n)),); k \\ Charles R Greathouse IV, Feb 26 2014
    
  • Python
    import sympy
    from sympy import factorint
    def DigitSum(x):
        return sum(int(i) for i in str(x))
    def PowExp(p):
        n = 2
        while n < 10000*(10**(int(2**p/9)/p)):
            if DigitSum(n**p) != 1:
                count = 0
                for i in list(factorint(DigitSum(n**p)).values()):
                    if (int(i)/p) % 1 == 0:
                        count += 1
                if count == len(list(factorint(DigitSum(n**p)).values())):
                    return n
                else:
                    n += 1
            else:
                n += 1
    print(1)
    x = 2
    while x < 20:
        print(PowExp(x))
        x += 1
    # Derek Orr, Feb 16 2014
    
  • Python
    from sympy import factorint
    def A069648(n):
        if (n == 1):
            return 1
        else:
            m = 2
            while True:
                x = sum(int(d) for d in str(m**n))
                if x > 1 and not any(map(lambda x:x%n,factorint(x).values())):
                    return m
                m += 1 # Chai Wah Wu, Aug 11 2014

Formula

a(n) > c^2^n for n > 1 where c = 10^(1/81) = 1.0288.... - Charles R Greathouse IV, Feb 26 2014

Extensions

Corrected and extended by David Wasserman, Apr 23 2003