This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069686 #35 Apr 20 2024 10:01:03 %S A069686 127,131,137,139,151,157,173,179,223,227,229,233,239,251,257,271,277, %T A069686 331,337,353,359,373,379,421,431,433,439,457,479,521,523,557,571,577, %U A069686 631,653,659,673,677,727,733,739,751,757,773,821,823,827,829,839,853 %N A069686 Primes whose internal digits form a prime. %C A069686 Primes that remain prime upon deleting the first and last digits. %H A069686 Jason Yuen, <a href="/A069686/b069686.txt">Table of n, a(n) for n = 1..10000</a> (correcting Christian N. K. Anderson previous bfile). %t A069686 Select[Range[100, 853], PrimeQ[#] && PrimeQ[FromDigits[Rest[Most[IntegerDigits[#]]]]] &] (* _T. D. Noe_, Apr 05 2013 *) %o A069686 (PARI) {indigs(n)=local(j,a,d); n=n\10; j=1; a=0; while(n>10,d=divrem(n,10); n=d[1]; a=a+j*d[2]; j=10*j); a} %o A069686 forprime(p=1,855,if(isprime(indigs(p)),print1(p,","))) \\ _Klaus Brockhaus_, Nov 06 2002 %o A069686 (Python) %o A069686 from sympy import isprime %o A069686 for p in filter(isprime, range(100, 855)): %o A069686 if isprime(int(str(p)[1:-1])): print(p) # _Jason Yuen_, Mar 28 2024 %Y A069686 Cf. A077359, A077360. %K A069686 base,nonn,easy %O A069686 1,1 %A A069686 _Amarnath Murthy_, Nov 05 2002 %E A069686 Edited and extended by _Klaus Brockhaus_, Nov 06 2002 %E A069686 Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, May 21 2007