cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069735 Number of regular orientable coverings of the Klein bottle with 2n lists.

This page as a plain text file.
%I A069735 #64 Dec 22 2023 05:56:47
%S A069735 1,3,2,5,2,6,2,7,3,6,2,10,2,6,4,9,2,9,2,10,4,6,2,14,3,6,4,10,2,12,2,
%T A069735 11,4,6,4,15,2,6,4,14,2,12,2,10,6,6,2,18,3,9,4,10,2,12,4,14,4,6,2,20,
%U A069735 2,6,6,13,4,12,2,10,4,12,2,21,2,6,6,10,4,12,2,18,5,6,2,20,4,6,4,14,2,18
%N A069735 Number of regular orientable coverings of the Klein bottle with 2n lists.
%C A069735 Dirichlet convolution of A000012 by A040001. - _R. J. Mathar_, Mar 30 2011
%C A069735 a(n) is the number of full-dimensional lattices with volume n in Z^2 which are symmetric about a coordinate axis (equivalently, about both). - _Álvar Ibeas_, Mar 19 2021
%H A069735 Andrey Zabolotskiy, <a href="/A069735/b069735.txt">Table of n, a(n) for n = 1..10000</a>
%H A069735 Valery A. Liskovets and Alexander Mednykh, <a href="https://www.researchgate.net/publication/251203042">Number of non-orientable coverings of the Klein bottle</a>, 2002.
%H A069735 John S. Rutherford, <a href="http://dx.doi.org/10.1107/S010876730804333X">Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type</a>, Acta Cryst. (2009). A65, 156-163. [See Table 1]. - From _N. J. A. Sloane_, Feb 23 2009
%F A069735 Multiplicative with a(2^e)=2e+1 and a(p^e)=e+1 for e>0 and an odd prime p.
%F A069735 a(n) = d(n)+d(n/2) for even n and a(n) = d(n) otherwise where d(n) is the number of divisors of n (A000005).
%F A069735 G.f.: Sum_{k>0} x^k*(1+2*x^k)/(1-x^(2*k)). - _Vladeta Jovovic_, Dec 16 2002
%F A069735 Dirichlet g.f.: (1+2^(-s))*zeta^2(s) [ Rutherford]. - _N. J. A. Sloane_, Feb 23 2009
%F A069735 Moebius transform is period 2 sequence [ 1, 2, ...]. - _Michael Somos_, Mar 24 2012
%F A069735 a(2*n - 1) = A099774(n).
%F A069735 a(n) = Sum_{ m: m^2|n } A304182(n/m^2). - _Andrey Zabolotskiy_, May 07 2018
%F A069735 Sum_{k=1..n} a(k) ~ 3*n*log(n)/2 + (3*gamma - 3/2 - log(2)/2)*n, where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Oct 04 2019
%F A069735 a(n) = 3*tau(n) - tau(2*n). - _Ridouane Oudra_, Mar 15 2021
%F A069735 a(n) = A320111(n) + (A059841(n)*A000005(n)), i.e. a(n) = A320111(n) if n is odd, and a(n) = A320111(n) + A000005(n) if n is even. - _Antti Karttunen_, Mar 17 2021
%F A069735 a(n) = A000005(n) + A183063(n) = 2*A000005(n) - A001227(n). - _Amiram Eldar_, Dec 22 2023
%e A069735 x + 3*x^2 + 2*x^3 + 5*x^4 + 2*x^5 + 6*x^6 + 2*x^7 + 7*x^8 + 3*x^9 + 6*x^10 + ...
%p A069735 read("transforms") : nmax := 100 :
%p A069735 L := [1,1,seq(0,i=1..nmax)] :
%p A069735 MOBIUSi(%) :
%p A069735 MOBIUSi(%) ; # _R. J. Mathar_, Sep 25 2017
%p A069735 with(NumberTheory): seq(tau(n) + `if`(n::odd, 0, tau(n/2)), n=1..100); # _Peter Luschny_, Mar 19 2021
%t A069735 d[n_] := DivisorSigma[0, n];
%t A069735 a[n_] := If[EvenQ[n], d[n] + d[n/2], d[n]];
%t A069735 Array[a, 100] (* _Jean-François Alcover_, Aug 27 2019 *)
%o A069735 (PARI) {a(n) = if( n<1, 0, numdiv(n) + if( n%2, 0, numdiv( n / 2)))} /* _Michael Somos_, Mar 24 2012 */
%Y A069735 Equals row sums of triangle A143110. - _Gary W. Adamson_, Jul 25 2008
%Y A069735 Cf. A000005, A000012, A001227, A001620, A040001, A059841, A069734, A099774, A183063, A304182, A320111.
%K A069735 mult,easy,nonn
%O A069735 1,2
%A A069735 _Valery A. Liskovets_, Apr 07 2002
%E A069735 Corrected by _T. D. Noe_, Nov 13 2006