This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069736 #23 Jan 05 2021 21:30:38 %S A069736 1,2,13,150,2541,57330,1623105,55405350,2216439225,101738006370, %T A069736 5271938032725,304455567165750,19391501988260325,1350480167457671250, %U A069736 102096314890336391625,8327231070135771543750,728877648485930118800625 %N A069736 Total number of Eulerian circuits in labeled multigraphs with n edges. %H A069736 B. Lass, <a href="http://dx.doi.org/10.1016/S0764-4442(01)02049-3">Démonstration combinatoire de la formule de Harer-Zagier</a>, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333 (2001) No 3, 155-160. %H A069736 B. Lass, <a href="http://math.univ-lyon1.fr/~lass/articles/pub3zagier.html">Démonstration combinatoire de la formule de Harer-Zagier</a>, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333 (2001) No 3, 155-160. %H A069736 Valery Liskovets, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL5/Liskovets/liskovets4.html">A Note on the Total Number of Double Eulerian Circuits in Multigraphs </a>, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.5 %F A069736 a(n) = (2*n)!/(2^n*n!)(3^(n+1)-1)/(2*(n+1)). %F A069736 E.g.f.: (sqrt(1-2*x)-sqrt(1-6*x))/(2*x). %F A069736 From _Sergei N. Gladkovskii_, Jul 25 2012: (Start) %F A069736 G.f.: 1 + 8*x/(G(0)-8*x); where G(k) = x*(k+1)*(2*k+1)*(9*3^k-1) + (k+2)*(3*3^k-1) - x*((k+2)^2)*(3*3^k-1)*(2*k+3)*(27*3^k-1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). %F A069736 G.f.: (3/2)*G(0) where G(k) = 1 - 1/(3*3^k - 27*x*(k+1)*(2*k+1)*9^k/(9*x*(2*k+1)*(k+1)*3^k - (k+2)/Q2)); (continued fraction, 3rd kind, 3-step). %F A069736 E.g.f.: (sqrt(1-2*x) - sqrt(1-6*x))/(2*x) = G(0)/(2*x); where G(k) = 1 - 3^k/(1 - x*(2*k-1)/(x*(2*k-1) - 3^k*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). %F A069736 (End) %t A069736 Table[(2n)!/(2^n n!)(3^(n+1)-1)/(2(n+1)),{n,0,20}] (* _Harvey P. Dale_, Aug 24 2019 *) %o A069736 (PARI) x=xx+O(xx^33); Vec(serlaplace((sqrt(1-2*x)-sqrt(1-6*x))/(2*x))) \\ _Michel Marcus_, Dec 11 2014 %Y A069736 Cf. A011781. %K A069736 easy,nonn %O A069736 0,2 %A A069736 _Valery A. Liskovets_, Apr 07 2002