cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069739 Size of the key space for isomorphism verification of circulant graphs of order n.

This page as a plain text file.
%I A069739 #23 Nov 25 2024 09:06:53
%S A069739 1,1,1,2,1,1,1,5,2,1,1,2,1,1,1,14,1,2,1,2,1,1,1,5,2,1,5,2,1,1,1,42,1,
%T A069739 1,1,4,1,1,1,5,1,1,1,2,2,1,1,14,2,2,1,2,1,5,1,5,1,1,1,2,1,1,2,132,1,1,
%U A069739 1,2,1,1,1,10,1,1,2,2,1,1,1,14,14,1,1,2,1,1,1,5,1,2
%N A069739 Size of the key space for isomorphism verification of circulant graphs of order n.
%C A069739 Multiplicative with a(p^m) = Catalan(m) (A000108). Coincides with A066060 up to n=63 except for n=32.
%H A069739 Antti Karttunen, <a href="/A069739/b069739.txt">Table of n, a(n) for n = 1..10000</a>
%H A069739 M. Muzychuk, <a href="https://www.researchgate.net/publication/231890239_A_solution_of_the_isomorphism_problem_for_circulant_graphs">A solution of the isomorphism problem for circulant graphs</a>, Proc. London Math. Soc. (3) 88 (2004), no. 1, 1-41.
%H A069739 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A069739 a(n) = prod_p Catalan(m_p) where n=prod_p p^(m_p), p|n prime.
%F A069739 From _Antti Karttunen_, May 28-29 2017: (Start)
%F A069739 a(1) = 1; for n > 1, a(n) = A000108(A067029(n)) * a(A028234(n)).
%F A069739 a(n) = A246596(A156552(n)). (End)
%p A069739 A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
%p A069739 A069739 := proc(n) local ifa; if n = 1 then 1; else ifa := ifactors(n)[2] ; mul( A000108(op(2,f)), f=ifa) ; end if; end proc:
%p A069739 seq(A069739(n),n=1..90) ; # _R. J. Mathar_, Feb 08 2011
%t A069739 Table[Times @@ Map[CatalanNumber, FactorInteger[n][[All, -1]]], {n, 90}] (* _Michael De Vlieger_, May 28 2017 *)
%o A069739 (Scheme) (define (A069739 n) (if (= 1 n) n (* (A000108 (A067029 n)) (A069739 (A028234 n))))) ;; _Antti Karttunen_, May 28 2017
%Y A069739 Cf. A000108, A066060, A028234, A067029, A156552, A246596.
%K A069739 mult,easy,nonn
%O A069739 1,4
%A A069739 _Valery A. Liskovets_, Apr 15 2002