This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069749 #16 May 23 2024 09:19:09 %S A069749 2,3,5,7,11,18,31,44,83,135,239,436,818,1436,2773,4695,9244,17022, %T A069749 32948,58158,116040,214188,423902,791950,1554834,2904470,5725780, %U A069749 10536383,21070698,40748211,79634658,148530950,296094802,561919901 %N A069749 Number of primes less than 10^n containing only the digits 2 and 3 (A020458). %C A069749 a(22) / A006880(22) = 214188 / 201467286689315906290 =~ 10^-15. But out of the 2^22 candidates for primes, ~5% are. %t A069749 s = 0; Do[k = 0; While[k < 2^n, k++; If[p = FromDigits[ PadLeft[ IntegerDigits[k, 2], n] + 2]; PrimeQ[p], s++ ]]; Print[s], {n, 1, 22}] %t A069749 With[{c=Select[Flatten[Table[FromDigits/@Tuples[{2,3},n],{n,22}]], PrimeQ]}, Table[Count[c,_?(#<10^i&)],{i,22}]] (* _Harvey P. Dale_, Mar 18 2016 *) %o A069749 (Python) %o A069749 from sympy import isprime %o A069749 from itertools import count, islice, product %o A069749 def agen(): # generator of terms %o A069749 c = 2 %o A069749 for d in count(2): %o A069749 yield c %o A069749 for first in product("23", repeat=d-1): %o A069749 t = int("".join(first) + "3") %o A069749 if isprime(t): c += 1 %o A069749 print(list(islice(agen(), 20))) # _Michael S. Branicky_, May 23 2024 %Y A069749 Cf. A006880, A020458 & A036937. %K A069749 base,nonn,more %O A069749 1,1 %A A069749 _Robert G. Wilson v_, Apr 22 2002 %E A069749 a(23)-a(27) from _Sean A. Irvine_, May 17 2024 %E A069749 a(28)-a(34) from _Michael S. Branicky_, May 22 2024