This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069754 #38 Jan 17 2024 05:08:12 %S A069754 0,1,1,2,3,4,5,6,6,6,7,8,9,10,10,10,11,12,13,14,14,14,15,16,16,16,16, %T A069754 16,17,18,19,20,20,20,20,20,21,22,22,22,23,24,25,26,26,26,27,28,28,28, %U A069754 28,28,29,30,30,30,30,30,31,32,33,34,34,34,34,34,35,36,36,36,37,38,39 %N A069754 Counts transitions between prime and nonprime to reach the number n. %C A069754 The following sequences all appear to have the same parity (with an extra zero term at the start of A010051): A010051, A061007, A035026, A069754, A071574. - _Jeremy Gardiner_, Aug 09 2002 %H A069754 T. D. Noe, <a href="/A069754/b069754.txt">Table of n, a(n) for n=1..1000</a> %F A069754 When n is prime, a(n) = 2*pi(n) - 3. When n is composite, a(n) = 2*pi(n) - 2. pi(n) is the prime counting function A000720. %F A069754 For n > 2: a(n) = 2*A000720(n) - 2 - A010051(n). - _Reinhard Zumkeller_, Dec 04 2012 %e A069754 a(6) = 4 because there are 4 transitions: 1 to 2, 3 to 4, 4 to 5 and 5 to 6. %t A069754 For[lst={0}; trans=0; n=2, n<100, n++, If[PrimeQ[n]!=PrimeQ[n-1], trans++ ]; AppendTo[lst, trans]]; lst %t A069754 (* Second program: *) %t A069754 pts[n_]:=Module[{c=2PrimePi[n]},If[PrimeQ[n],c-3,c-2]]; Join[{0,1},Array[ pts,80,3]] (* _Harvey P. Dale_, Nov 12 2011 *) %t A069754 Accumulate[If[Sort[PrimeQ[#]]=={False,True},1,0]&/@Partition[ Range[ 0,80],2,1]] (* _Harvey P. Dale_, May 06 2013 *) %o A069754 (Haskell) %o A069754 a069754 1 = 0 %o A069754 a069754 2 = 1 %o A069754 a069754 n = 2 * a000720 n - 2 - (toInteger $ a010051 $ toInteger n) %o A069754 -- _Reinhard Zumkeller_, Dec 04 2012 %Y A069754 Cf. A000720 (pi). %Y A069754 Cf. A211005 (run lengths). %Y A069754 Same parity: A010051, A061007, A035026, A071574. %K A069754 easy,nice,nonn %O A069754 1,4 %A A069754 _T. D. Noe_, May 02 2002