cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069756 Frobenius number of the numerical semigroup generated by consecutive squares.

This page as a plain text file.
%I A069756 #45 Feb 10 2021 08:10:30
%S A069756 23,119,359,839,1679,3023,5039,7919,11879,17159,24023,32759,43679,
%T A069756 57119,73439,93023,116279,143639,175559,212519,255023,303599,358799,
%U A069756 421199,491399,570023,657719,755159,863039,982079,1113023,1256639,1413719,1585079,1771559
%N A069756 Frobenius number of the numerical semigroup generated by consecutive squares.
%C A069756 The Frobenius number of a numerical semigroup generated by relatively prime integers a_1, ..., a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since consecutive squares are relatively prime, they generate a numerical semigroup with a Frobenius number. The Frobenius number of a 2-generated semigroup <a,b> has the formula ab-a-b.
%C A069756 Given the set {n, n+1, n+2, n+3} and starting at n=0, the sum of all possible products of the terms in all possible subsets = a(n+2).  Example for n=5, 5+6+7+8=26; 5(6+7+8)+6*(7+8)+7*8=277; 5*(6*7+6*8+7*8)+6*7*8=1066; 5*6*7*8=1680 and the sum of these 15 possible subsets is 3023 = a(5+2) = a(7). The sum is a(n+2) = n^4 + 10*n^3 + 35*n^2 + 50*n + 23. - _J. M. Bergot_, Apr 17 2013
%H A069756 T. D. Noe, <a href="/A069756/b069756.txt">Table of n, a(n) for n = 2..1000</a>
%H A069756 R. Fröberg, C. Gottlieb and R. Häggkvist, <a href="http://dx.doi.org/10.1007/BF02573091">On numerical semigroups</a>, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
%H A069756 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A069756 a(n) = n^2*(n+1)^2-n^2-(n+1)^2 = n^4+2*n^3-n^2-2*n-1.
%F A069756 a(n) = Numerator of ((n + 2)! - (n - 2)!)/n!, n >=2. - _Artur Jasinski_, Jan 09 2007
%F A069756 G.f.: x^2*(23+4*x-6*x^2+4*x^3-x^4)/(1-x)^5. [_Colin Barker_, Feb 14 2012]
%F A069756 a(n) = (n-1)*n*(n+1)*(n+2) - 1 = A052762(n+2) - 1. - _Jean-Christophe Hervé_, Nov 01 2015
%e A069756 a(2)=23 because 23 is not a nonnegative linear combination of 4 and 9, but all integers greater than 23 are.
%p A069756 seq(n^4+2*n^3-n^2-2*n-1, n=2..50); # _Robert Israel_, Nov 01 2015
%t A069756 Table[(n^2-1)((n+1)^2-1)-1, {n,2,30}] (* _T. D. Noe_, Nov 27 2006 *)
%t A069756 FrobeniusNumber/@Partition[Range[2,40]^2,2,1] (* _Harvey P. Dale_, Jul 25 2012 *)
%o A069756 (PARI) x='x+O('x^50); Vec(x^2*(23+4*x-6*x^2+4*x^3-x^4)/(1-x)^5) \\ _Altug Alkan_, Nov 01 2015
%Y A069756 Cf. A000290, A037165, A059769, A069755, A069757-A069764.
%K A069756 easy,nice,nonn
%O A069756 2,1
%A A069756 Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 05 2002
%E A069756 Corrected by _T. D. Noe_, Nov 27 2006