cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069760 Frobenius number of the numerical semigroup generated by consecutive centered square numbers.

This page as a plain text file.
%I A069760 #19 Aug 22 2025 02:18:10
%S A069760 47,287,959,2399,5039,9407,16127,25919,39599,58079,82367,113567,
%T A069760 152879,201599,261119,332927,418607,519839,638399,776159,935087,
%U A069760 1117247,1324799,1559999,1825199,2122847
%N A069760 Frobenius number of the numerical semigroup generated by consecutive centered square numbers.
%C A069760 The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since consecutive centered squares are relatively prime, they generate a numerical semigroup with a Frobenius number. The Frobenius number of a 2-generator semigroup <a,b> is ab-a-b.
%H A069760 R. Fröberg, C. Gottlieb and R. Häggkvist, <a href="https://gdz.sub.uni-goettingen.de/id/PPN362162808_0035">On numerical semigroups</a>, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
%H A069760 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A069760 a(n) = 4*n^4+16*n^3+20*n^2+8*n-1.
%F A069760 a(n) = 5*a(n-1)-10*a(n-2) +10*a(n-3)-5*a(n-4)+a(n-5). - _Harvey P. Dale_, Apr 25 2011
%F A069760 G.f.: x*(47+52*x-6*x^2+4*x^3-x^4)/(1-x)^5. - _Colin Barker_, Feb 14 2012
%e A069760 a(1)=47 because 47 is not a nonnegative linear combination of 5 and 13, but all integers greater than 47 are.
%t A069760 Table[4n^4+16n^3+20n^2+8n-1,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{47,287,959,2399,5039},30] (* _Harvey P. Dale_, Apr 25 2011 *)
%Y A069760 Cf. A001844, A037165, A059769, A069755-A069764.
%K A069760 easy,nonn
%O A069760 1,1
%A A069760 Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 09 2002