cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069761 Frobenius number of the numerical semigroup generated by four consecutive tetrahedral numbers.

This page as a plain text file.
%I A069761 #23 Sep 01 2025 17:18:20
%S A069761 41,249,253,853,1243,1571,2619,5059,5357,9437,11801,13609,18327,27607,
%T A069761 28919,41951,49169,54473,67253,90573,94051,124099,140347,152027,
%U A069761 178989,226141,233369,291089,321839,343639,392631,475999,488993,587633,639653,676181,756779
%N A069761 Frobenius number of the numerical semigroup generated by four consecutive tetrahedral numbers.
%C A069761 The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since four consecutive tetrahedral numbers are relatively prime, they generate a numerical semigroup with a Frobenius number.
%H A069761 Harvey P. Dale, <a href="/A069761/b069761.txt">Table of n, a(n) for n = 2..100</a>
%H A069761 R. Fröberg, C. Gottlieb and R. Häggkvist, <a href="https://gdz.sub.uni-goettingen.de/id/PPN362162808_0035">On numerical semigroups</a>, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
%F A069761 Conjecture: a(n)= +a(n-1) +4*a(n-6) -4*a(n-7) -6*a(n-12) +6*a(n-13) +4*a(n-18) -4*a(n-19) -a(n-24) +a(n-25). - _R. J. Mathar_, Aug 15 2025
%F A069761 Conjectured g.f.: x^2*(-4*x^2 -600*x^3 -390*x^4 -1680*x^9 -282*x^8 -496*x^11 -804*x^10 -208*x -312*x^15 -144*x^14 -768*x^13 -772*x^12-41 -32*x^18 -40*x^17 -102*x^16 -2*x^20 -8*x^19 -1608*x^7 +x^24 -884*x^6 -328*x^5) / ( (1+x)^4 *(x^2-x+1)^4 *(1+x+x^2)^4 *(x-1)^5 ). - _R. J. Mathar_, Aug 15 2025
%e A069761 a(2) = 41 because 41 is not a nonnegative linear combination of 4, 10, 20 and 35, but all integers greater than 43 are.
%t A069761 FrobeniusNumber/@Partition[Binomial[Range[2,50]+2,3],4,1] (* _Harvey P. Dale_, Jan 22 2012 *)
%Y A069761 Cf. A000292, A037165, A059769, A069755-A069764.
%K A069761 easy,nonn,changed
%O A069761 2,1
%A A069761 Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 09 2002
%E A069761 Sequence terms corrected and extended by _Harvey P. Dale_, Jan 22 2012
%E A069761 Offset corrected and example corrected by _Harvey P. Dale_, Jan 24 2012