cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069764 Frobenius number of the numerical semigroup generated by consecutive octahedral numbers.

This page as a plain text file.
%I A069764 #27 Aug 20 2025 10:57:54
%S A069764 89,773,3611,12179,33349,78889,167383,326471,595409,1027949,1695539,
%T A069764 2690843,4131581,6164689,8970799,12769039,17822153,24441941,32995019,
%U A069764 43908899,57678389,74872313,96140551,122221399,153949249,192262589,238212323,292970411,357838829
%N A069764 Frobenius number of the numerical semigroup generated by consecutive octahedral numbers.
%C A069764 The Frobenius number of a numerical semigroup generated by relatively prime integers a_1,...,a_n is the largest positive integer that is not a nonnegative linear combination of a_1,...,a_n. Since consecutive octahedral numbers are relatively prime, they generate a numerical semigroup with a Frobenius number. The Frobenius number of a 2-generated semigroup <a,b> has the formula ab-a-b.
%H A069764 Harvey P. Dale, <a href="/A069764/b069764.txt">Table of n, a(n) for n = 2..1000</a>
%H A069764 R. Fröberg, C. Gottlieb and R. Häggkvist, <a href="https://gdz.sub.uni-goettingen.de/id/PPN362162808_0035">On numerical semigroups</a>, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
%H A069764 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F A069764 a(n) = ((1/3)*n*(2*n^2+1)-1)*((1/3)*(n+1)*(2*(n+1)^2+1)-1)-1.
%F A069764 G.f.: x^2*(89+150*x+69*x^2+20*x^3-13*x^4+6*x^5-x^6)/(1-x)^7. - _Colin Barker_, Feb 12 2012
%F A069764 a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+ 21*a(n-5)- 7*a(n-6)+a(n-7). - _Harvey P. Dale_, Nov 19 2015
%e A069764 a(2)=89 because 89 is not a nonnegative linear combination of 6 and 19 (the second and third octahedral numbers), but all integers greater than 89 are.
%t A069764 FrobeniusNumber/@Partition[Rest[Table[(n(2n^2+1))/3,{n,30}]],2,1] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{89,773,3611,12179,33349,78889,167383},30] (* _Harvey P. Dale_, Nov 19 2015 *)
%Y A069764 Cf. A005900, A037165, A059769, A069755-A069763.
%K A069764 nonn,easy
%O A069764 2,1
%A A069764 Victoria A Sapko (vsapko(AT)canes.gsw.edu), Apr 18 2002
%E A069764 More terms from _Carl Najafi_, Sep 10 2011