A069765 Number of distinct values obtained using n ones and the operations of sum, product and quotient.
1, 2, 4, 7, 13, 24, 42, 77, 138, 249, 454, 823, 1493, 2719, 4969, 9060, 16588, 30375, 55672, 102330, 188334, 346624, 639280, 1179742, 2178907, 4029060, 7456271, 13806301, 25587417, 47452133, 88057540, 163518793, 303826088, 564825654
Offset: 1
Examples
a(5)=13 because five ones yield the following 13 distinct values and no others: 1+1+1+1+1=5, 1+1+1+(1/1)=4, 1/(1+1+1+1)=1/4, 1+(1/1)+(1/1)=3, 1/(1+1+(1/1))=1/3, 1+(1/(1+1+1))=4/3, 1+(1/1)*(1/1)=2, 1/((1/1)+(1/1))=1/2, (1+1+1)/(1+1)=3/2, 1+1+(1/(1+1))=5/2, (1+1)/(1+1+1)=2/3, 1*1*1*1*1=1 and (1+1)*(1+1+1)=6.
Crossrefs
Cf. A048249.
Programs
-
Python
from fractions import Fraction from functools import lru_cache @lru_cache() def f(m): if m == 1: return {Fraction(1, 1)} out = set() for j in range(1, m//2+1): for x in f(j): for y in f(m-j): out.update([x + y, x * y]) if y: out.add(Fraction(x, y)) if x: out.add(Fraction(y, x)) return out def a(n): return len(f(n)) print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jul 28 2022
Extensions
a(20)-a(30) from Michael S. Branicky, Jul 29 2022
a(31)-a(34) from Michael S. Branicky, Jun 30 2023