cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069765 Number of distinct values obtained using n ones and the operations of sum, product and quotient.

Original entry on oeis.org

1, 2, 4, 7, 13, 24, 42, 77, 138, 249, 454, 823, 1493, 2719, 4969, 9060, 16588, 30375, 55672, 102330, 188334, 346624, 639280, 1179742, 2178907, 4029060, 7456271, 13806301, 25587417, 47452133, 88057540, 163518793, 303826088, 564825654
Offset: 1

Views

Author

John W. Layman, Apr 05 2002

Keywords

Examples

			a(5)=13 because five ones yield the following 13 distinct values and no others: 1+1+1+1+1=5, 1+1+1+(1/1)=4, 1/(1+1+1+1)=1/4, 1+(1/1)+(1/1)=3, 1/(1+1+(1/1))=1/3, 1+(1/(1+1+1))=4/3, 1+(1/1)*(1/1)=2, 1/((1/1)+(1/1))=1/2, (1+1+1)/(1+1)=3/2, 1+1+(1/(1+1))=5/2, (1+1)/(1+1+1)=2/3, 1*1*1*1*1=1 and (1+1)*(1+1+1)=6.
		

Crossrefs

Cf. A048249.

Programs

  • Python
    from fractions import Fraction
    from functools import lru_cache
    @lru_cache()
    def f(m):
        if m == 1: return {Fraction(1, 1)}
        out = set()
        for j in range(1, m//2+1):
            for x in f(j):
                for y in f(m-j):
                    out.update([x + y, x * y])
                    if y: out.add(Fraction(x, y))
                    if x: out.add(Fraction(y, x))
        return out
    def a(n): return len(f(n))
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jul 28 2022

Extensions

a(20)-a(30) from Michael S. Branicky, Jul 29 2022
a(31)-a(34) from Michael S. Branicky, Jun 30 2023