cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A286835 a(n) is the number of terms m such that d(m!) divides d((m!)^(2n+1)), where d is A000005.

Original entry on oeis.org

5, 8, 15, 6, 29, 27, 5, 54, 60, 6, 63, 7, 6, 54, 75, 6, 12, 52, 7, 76, 69, 5, 74, 27, 6, 78, 12, 6, 97, 33, 6, 15, 85, 5, 99, 46, 5, 15, 95, 6, 56, 13, 6, 82, 20, 5, 7, 81, 6, 126, 141, 5, 130, 67, 6, 52, 13, 5, 17, 38, 5, 8, 55, 6, 85, 15, 5, 106, 143, 5, 22, 12, 6, 95, 94, 6
Offset: 1

Views

Author

Robert G. Wilson v, Jul 31 2017

Keywords

Comments

Inspired by A069784.
Bisection of A286872.
d(m!) divides d((m!)^(2n)) only when m = 1.
The largest m for a(n) is: 5, 15, 91, 9, 275, 488, 5, 655, 1205, 21, 1687, 14, 9, 1462, 2313, 21, 35, 3436, 21, 7447, 4687, 5, 2555, 220, 9, 4627, 38, 9, 5114, 2606, 21, 65, 6071, 5, 4935, 5509, 5, 77, 10173, 9, 1646, 39, 9, 6715, 95, 5, 65, 2321, 9, 3786, 7059, 5, 7014, 1264, 9, 6272, 35, 5, 33, 215, 5, 27, 4283, 9, 2471, ..., ; and their records: 5, 15, 91, 275, 488, 655, 1205, 1687, 2313, 3436, 7447, 10173, 15464, 20004, 38539, 40605, 49143, ..., .

Examples

			a(1) = 5 since d(m!) divides d(m!^3) only for m = {1, 2, 3, 4, 5};
a(2) = 8 since d(m!) divides d(m!^5) only for m = {1, 2, 3, 4, 5, 12, 13, 15};
a(3) = 15 since d(m!) divides d(m!^7) only for m = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 32, 33, 34, 35, 91};
a(4) = 6 since d(m!) divides d(m!^9) only for m = {1, 2, 3, 4, 5, 9};
a(5) = 29 since d(m!) divides d(m!^11) only for m = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ..., 274, 275}; etc.
		

Crossrefs

Programs

  • Mathematica
    factExpLst[nbr_] := factExpLst[nbr] = Table[Plus @@ Rest@ NestWhileList[ Floor[#/prm] &, nbr, # > 0 &], {prm, Prime@ Range@ PrimePi@ nbr}] (* which is the same as Transpose[ FactorInteger[ nbr!]][[2]] *);
    ds0[nbr_, exp_] := Times @@ (1 + exp*factExpLst[ nbr]);
    fQ[nbr_, exp_] := Mod[ds0[nbr, exp], ds0[nbr, 1]] == 0;
    f[n_] := f[n] = If[EvenQ@ n, {1}, Select[Range@ 100000, fQ[#, n] &]];
    f[1] = {};
    Array[ Length@ f[2# +1] &, 60]
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    f(m,e)=my(s=1); forprime(p=2,m\2, s*=e*valp(m,p)+1); s*(e+1)^(primepi(m)-primepi(m\2))
    search(n,lim=100*n^2)=my(v=List(),e=2*n+1); for(m=1,lim, if(f(m,e)%f(m,1)==0, listput(v,m))); Vec(v) \\ N.B., empirical upper bound
    a(n)=#search(n) \\ Charles R Greathouse IV, Aug 01 2017

A069785 a(n) = A061680(n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 15, 15, 3, 5, 135, 135, 99, 99, 9, 63, 21, 21, 459, 459, 135, 19, 15, 15, 15, 21, 189, 189, 585, 585, 18225, 18225, 675, 15, 135, 891, 8505, 25515, 81, 81, 7695, 7695, 1575, 1575, 4725, 6615, 40635, 40635, 945, 1215, 3645, 3645, 151875, 151875
Offset: 1

Views

Author

Labos Elemer, Apr 09 2002

Keywords

Examples

			Observe cases when consecutive terms are equal: n={1,2,3,4,6,10,...,78,80,82,88,96}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n!][[;;, 2]]}, GCD[Times @@ (2*e+1), Times @@ (e+1)]]; Array[a, 100] (* Amiram Eldar, Dec 02 2023 *)
  • PARI
    a(n) = {my(e = factor(n!)[,2]); gcd(vecprod(apply(x -> 2*x+1, e)), vecprod(apply(x -> x+1, e)));} \\ Amiram Eldar, Dec 02 2023

Formula

a(n) = A061680(A000142(n)). - Amiram Eldar, Dec 02 2023
Showing 1-2 of 2 results.