A286835 a(n) is the number of terms m such that d(m!) divides d((m!)^(2n+1)), where d is A000005.
5, 8, 15, 6, 29, 27, 5, 54, 60, 6, 63, 7, 6, 54, 75, 6, 12, 52, 7, 76, 69, 5, 74, 27, 6, 78, 12, 6, 97, 33, 6, 15, 85, 5, 99, 46, 5, 15, 95, 6, 56, 13, 6, 82, 20, 5, 7, 81, 6, 126, 141, 5, 130, 67, 6, 52, 13, 5, 17, 38, 5, 8, 55, 6, 85, 15, 5, 106, 143, 5, 22, 12, 6, 95, 94, 6
Offset: 1
Keywords
Examples
a(1) = 5 since d(m!) divides d(m!^3) only for m = {1, 2, 3, 4, 5}; a(2) = 8 since d(m!) divides d(m!^5) only for m = {1, 2, 3, 4, 5, 12, 13, 15}; a(3) = 15 since d(m!) divides d(m!^7) only for m = {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 32, 33, 34, 35, 91}; a(4) = 6 since d(m!) divides d(m!^9) only for m = {1, 2, 3, 4, 5, 9}; a(5) = 29 since d(m!) divides d(m!^11) only for m = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ..., 274, 275}; etc.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..625
Programs
-
Mathematica
factExpLst[nbr_] := factExpLst[nbr] = Table[Plus @@ Rest@ NestWhileList[ Floor[#/prm] &, nbr, # > 0 &], {prm, Prime@ Range@ PrimePi@ nbr}] (* which is the same as Transpose[ FactorInteger[ nbr!]][[2]] *); ds0[nbr_, exp_] := Times @@ (1 + exp*factExpLst[ nbr]); fQ[nbr_, exp_] := Mod[ds0[nbr, exp], ds0[nbr, 1]] == 0; f[n_] := f[n] = If[EvenQ@ n, {1}, Select[Range@ 100000, fQ[#, n] &]]; f[1] = {}; Array[ Length@ f[2# +1] &, 60]
-
PARI
valp(n,p)=my(s); while(n\=p, s+=n); s f(m,e)=my(s=1); forprime(p=2,m\2, s*=e*valp(m,p)+1); s*(e+1)^(primepi(m)-primepi(m\2)) search(n,lim=100*n^2)=my(v=List(),e=2*n+1); for(m=1,lim, if(f(m,e)%f(m,1)==0, listput(v,m))); Vec(v) \\ N.B., empirical upper bound a(n)=#search(n) \\ Charles R Greathouse IV, Aug 01 2017
Comments