This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069813 #36 Sep 08 2022 08:45:05 %S A069813 1,2,3,6,7,10,13,16,19,24,27,32,37,42,47,54,59,66,73,80,87,96,103,112, %T A069813 121,130,139,150,159,170,181,192,203,216,227,240,253,266,279,294,307, %U A069813 322,337,352,367,384,399,416,433,450,467,486,503,522,541,560,579 %N A069813 Maximum number of triangles in polyiamond with perimeter n. %H A069813 Colin Barker, <a href="/A069813/b069813.txt">Table of n, a(n) for n = 3..1000</a> %H A069813 W. C. Yang, R. R. Meyer, <a href="http://digital.library.wisc.edu/1793/64366">Maximal and minimal polyiamonds</a>, 2002. %H A069813 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1,-1,1). %F A069813 a(n) = round(n^2/6) - (0 if n = 0 mod 6, 1 else) = A056829(n)-A097325(n). %F A069813 From _Colin Barker_, Jan 18 2015: (Start) %F A069813 a(n) = round((-25 + 9*(-1)^n + 8*exp(-2/3*i*n*Pi) + 8*exp((2*i*n*Pi)/3) + 6*n^2)/36), where i=sqrt(-1). %F A069813 G.f.: x^3*(1+x-x^2)*(1+x^2) / ((1-x)^3*(1+x)*(1+x+x^2)). (End) %F A069813 a(n) = A001399(n-3) + A001399(n-4) + A001399(n-6) - A001399(n-7). - _R. J. Mathar_, Jul 14 2015 %e A069813 a(10) = 16 because the maximum number of triangles in a polyiamond of perimeter 10 is 16. %p A069813 A069813 := proc(n) %p A069813 round(n^2/6) ; %p A069813 if modp(n,6) <> 0 then %p A069813 %-1 ; %p A069813 else %p A069813 % ; %p A069813 end if; %p A069813 end proc: # _R. J. Mathar_, Jul 14 2015 %t A069813 LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 2, 3, 6, 7, 10}, 60] (* _Jean-François Alcover_, Jan 03 2020 *) %o A069813 (PARI) a(n) = round(n^2/6) - (n % 6 != 0) \\ _Michel Marcus_, Jul 17 2013 %o A069813 (PARI) Vec(x^3*(x^2-x-1)*(x^2+1)/((x-1)^3*(x+1)*(x^2+x+1)) + O(x^60)) \\ _Colin Barker_, Jan 19 2015 %o A069813 (Magma) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( x^3*(x^2-x-1)*(x^2+1)/((x-1)^3*(x+1)*(x^2+x+1)))); // _Marius A. Burtea_, Jan 03 2020 %Y A069813 Cf. A000105, A000577, A027709, A030511 (bisection), A057729, A067628. %K A069813 nonn,easy %O A069813 3,2 %A A069813 Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002