A069862 Smallest k such that n divides the concatenation of numbers from (n+1) to (n+k), where (n+1) is on the most significant side.
1, 2, 2, 2, 5, 2, 9, 4, 8, 10, 10, 8, 22, 16, 5, 4, 2, 8, 3, 20, 20, 10, 17, 12, 25, 22, 26, 16, 25, 20, 110, 20, 11, 2, 20, 8, 998, 52, 38, 20, 60, 20, 4, 32, 35, 42, 50, 20, 96, 50, 2, 96, 93, 26, 10, 20, 3, 50, 44, 20, 46, 40, 45, 40, 50, 32, 86, 32, 17, 20, 75, 72, 26, 926, 50
Offset: 1
Examples
a(7) = 9 as 7 divides 8910111213141516 the concatenation of numbers from 8(= 7+1) to 16 (= 7+9). a(5) = 5 because 5 will divide the number formed by concatenating the 5 integers after 5 in ascending order (i.e. 678910). a(385) = 9860 because 385 will divide the concatenation of 386,387,388,...,10245.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- C. Seggelin, Concatenation of Consecutive Integers.
Crossrefs
Programs
-
Maple
c[1] := 1:for n from 2 to 172 do k := 1:g := (n+k) mod n:while(true) do k := k+1:b := convert(n+k,base,10):g := (g*10^nops(b)+n+k) mod n: if((g mod n)=0) then c[n] := k:break:fi:od:od:seq(c[l],l=1..172);
-
Mathematica
f[n_] := Block[{k = n + 1}, d = k; While[ !IntegerQ[d/n], k++; d = d*10^Floor[Log[10, k] + 1] + k]; k - n]; Table[ f[n], {n, 1, 75}] (* Robert G. Wilson v, Nov 04 2003 *)
-
Python
def A069862(n): nk, kr, r = n+1, 1, 1 if n > 1 else 0 while r: nk += 1 kr = (kr + 1) % n r = (r*(10**len(str(nk)) % n)+kr) % n return nk-n # Chai Wah Wu, Oct 20 2014
Extensions
More terms from Sascha Kurz, Jan 28 2003
Comments