cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069882 Numbers n such that n and 2n-1 are both palindromes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 66, 666, 6666, 66666, 666666, 6666666, 66666666, 666666666, 6666666666, 66666666666, 666666666666, 6666666666666, 66666666666666, 666666666666666, 6666666666666666, 66666666666666666, 666666666666666666
Offset: 1

Views

Author

Amarnath Murthy, Apr 30 2002

Keywords

Comments

From Chai Wah Wu, Jul 20 2020: (Start)
Theorem: a(n) = 2*(10^(n-5)-1)/3 for n > 5.
Proof: clearly 2*(10^m-1)/3 are terms of this sequence. Next we show that all terms > 10 are of the form 2*(10^m-1)/3. Let k > 10 be a term of the sequence. Let x be the first digit (and thus also the last digit) of k. If x <> 6 then it is easy to show that the first and last digit of 2k-1 will not be the same. Thus x = 6. Let the digits of k be written as 6y****y6. Similarly if y <> 6 then again the second digit of 2k-1 will not be the same as the second to last digit of 2k-1. Continuing in this manner, this shows that k written in decimal is a sequence of 6's.
(End)

Examples

			66 is a member as 2*66 - 1 = 131 is also a palindrome.
		

Crossrefs

Formula

From Chai Wah Wu, Jul 20 2020: (Start)
a(n) = 2*(10^(n-5)-1)/3 for n > 5.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 7.
G.f.: x*(50*x^6 - 9*x^5 - 9*x^4 - 9*x^3 - 9*x^2 - 9*x + 1)/((x - 1)*(10*x - 1)).
(End)

Extensions

More terms from Hans Havermann, Jul 06 2002