cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070773 Number of solutions to p(2m)-2p(m)=2n-1, where p(m) = m-th prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 2, 0, 1, 0, 2, 1, 1, 3, 1, 1, 0, 1, 2, 0, 2, 1, 1, 1, 3, 2, 1, 3, 0, 1, 2, 2, 0, 0, 0, 0, 2, 1, 0, 3, 0, 3, 2, 3, 3, 1, 0, 0, 2, 2, 3, 2, 0, 3, 1, 0, 1, 1, 0, 1, 1, 1, 1, 7, 1, 2, 2, 1, 1, 1, 1, 2, 1, 0, 2, 0, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 2, 3, 3, 2, 1, 2, 1, 2, 2, 4
Offset: 1

Views

Author

Labos Elemer, May 06 2002

Keywords

Comments

p(2m)-2p(m) is approximately 2m Log[2].

Examples

			n=12: 2n-1=23, no solution, so a(12)=0; n=8: 2n-1=15, p[2x]={53,61,89},2*p(x)=2*{19,23,37}={38,46,74}, p[2x]-2p[x]={15,15,15}, three solutions, so a(8)=3.
		

Crossrefs

Programs

  • Mathematica
    j=0; Table[Print[j]; j=0; Do[s=Prime[2*n]-2*Prime[n]; If[Equal[s, 2*k-1], j=j+1], {n, 1, 2*k}], {k, 1, 11000}] (*number of solution=j*)

A070774 Odd numbers n such that p(2m)-2p(m)=n has no solution (p(m) = m-th prime).

Original entry on oeis.org

23, 27, 41, 47, 65, 73, 75, 77, 79, 85, 89, 101, 103, 113, 119, 125, 155, 159, 161, 165, 169, 175, 179, 183, 215, 217, 221, 233, 249, 253, 257, 263, 265, 275, 289, 291, 297, 299, 311, 329, 339, 341, 345, 347, 349, 353, 359, 363, 367, 375, 377, 379, 385, 395
Offset: 1

Views

Author

Labos Elemer, May 06 2002

Keywords

Crossrefs

Showing 1-2 of 2 results.